988 resultados para strain difference
Resumo:
Nanomaterials are prone to influence by chemical adsorption because of their large surface to volume ratios. This enables sensitive detection of adsorbed chemical species which, in turn, can tune the property of the host material. Recent studies discovered that single and multi-layer molybdenum disulfide (MoS2) films are ultra-sensitive to several important environmental molecules. Here we report new findings from ab inito calculations that reveal substantially enhanced adsorption of NO and NH3 on strained monolayer MoS2 with significant impact on the properties of the adsorbates and the MoS2 layer. The magnetic moment of adsorbed NO can be tuned between 0 and 1 μB; strain also induces an electronic phase transition between half-metal and metal. Adsorption of NH3 weakens the MoS2 layer considerably, which explains the large discrepancy between the experimentally measured strength and breaking strain of MoS2 films and previous theoretical predictions. On the other hand, adsorption of NO2, CO, and CO2 is insensitive to the strain condition in the MoS2 layer. This contrasting behavior allows sensitive strain engineering of selective chemical adsorption on MoS2 with effective tuning of mechanical, electronic, and magnetic properties. These results suggest new design strategies for constructing MoS2-based ultrahigh-sensitivity nanoscale sensors and electromechanical devices.
Resumo:
Objective Dehydration and symptoms of heat illness are common among the surface mining workforce. This investigation aimed to determine whether heat strain and hydration status exceeded recommended limits. Methods Fifteen blast crew personnel operating in the tropics were monitored across a 12-hour shift. Heart rate, core body temperature, and urine-specific gravity were continuously recorded. Participants self-reported fluid consumption and completed a heat illness symptom inventory. Results Core body temperature averaged 37.46 +/- 0.13[degrees]C, with the group maximum 37.98 +/- 0.19[degrees]C. Mean urine-specific gravity was 1.024 +/- 0.007, with 78.6% of samples 1.020 or more. Seventy-three percent of workers reported at least one symptom of heat illness during the shift. Conclusions Core body temperature remained within the recommended limits; however, more than 80% of workers were dehydrated before commencing the shift, and tended to remain so for the duration.
Resumo:
Transport processes within heterogeneous media may exhibit non- classical diffusion or dispersion which is not adequately described by the classical theory of Brownian motion and Fick’s law. We consider a space-fractional advection-dispersion equation based on a fractional Fick’s law. Zhang et al. [Water Resources Research, 43(5)(2007)] considered such an equation with variable coefficients, which they dis- cretised using the finite difference method proposed by Meerschaert and Tadjeran [Journal of Computational and Applied Mathematics, 172(1):65-77 (2004)]. For this method the presence of variable coef- ficients necessitates applying the product rule before discretising the Riemann–Liouville fractional derivatives using standard and shifted Gru ̈nwald formulas, depending on the fractional order. As an alternative, we propose using a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Gru ̈nwald formulas are used to discretise the Riemann–Liouville fractional derivatives at control volume faces, eliminating the need for product rule expansions. We compare the two methods for several case studies, highlighting the convenience of the finite volume approach.
Resumo:
Insulated rail joints are designed in a similar way to butt jointed steel structural systems, the difference being a purpose made gap between the main rail members to maintain electrical insulation for the proper functioning of the track circuitry at all times of train operation. When loaded wheels pass the gap, they induce an impact loading with the corresponding strains in the railhead edges exceeding the plastic limit significantly, which lead to metal flow across the gap thereby increasing the risk of short circuiting and impeding the proper functioning of the signalling and broken rail identification circuitries, of which the joints are a critical part. The performance of insulated rail joints under the passage of the wheel loading is complex due to the presence of a number of interacting components and hence is not well understood. This paper presents a dynamic wheel-rail contact-impact modelling method for the determination of the impact loading; a brief description of a field experiment to capture strain signatures for validating the predicted impact loading is also presented. The process and the results of the characterisation of the materials from virgin, in-service and damaged insulated rail joints using neutron diffraction method are also discussed.
Resumo:
Student-centred schools focus on designing learning experiences that recognise and respond to the individual needs of each of their students. They encourage all members of their school community to be active learners, working to enhance the educational opportunities available at their school. This literature review seeks to address and explore the hypothesis that studentcentred schools make the difference. The review commences by defining the concept of student-centred schooling and the various learning and educational theories that underpin related research. The authors present a model comprising six core elements of learning environments that student-centred schools demonstrate, with a focus on leadership. They also link their findings to the five professional practices in AITSL’s Australian Professional Standard for Principals to illustrate how these leadership practices drive and sustain studentcentred schools. Drawing from Viviane Robinson’s work on the dimensions of student-centred school leadership, together with several further dimensions identified through an environmental scan of literature, the authors consider how and in what ways student-centred schools make the difference.
Resumo:
There has been significant research in the field of database watermarking recently. However, there has not been sufficient attention given to the requirement of providing reversibility (the ability to revert back to original relation from watermarked relation) and blindness (not needing the original relation for detection purpose) at the same time. This model has several disadvantages over reversible and blind watermarking (requiring only the watermarked relation and secret key from which the watermark is detected and the original relation is restored) including the inability to identify the rightful owner in case of successful secondary watermarking, the inability to revert the relation to the original data set (required in high precision industries) and the requirement to store the unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to a high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store the original database at a secure secondary storage. We have implemented our scheme and results show the success rate is limited to 11% even when 48% tuples are modified.
Resumo:
There has been significant research in the field of database watermarking recently. However, there has not been sufficient attention given to the requirement of providing reversibility (the ability to revert back to original relation from watermarked relation) and blindness (not needing the original relation for detection purpose) at the same time. This model has several disadvantages over reversible and blind watermarking (requiring only the watermarked relation and secret key from which the watermark is detected and the original relation is restored) including the inability to identify the rightful owner in case of successful secondary watermarking, the inability to revert the relation to the original data set (required in high precision industries) and the requirement to store the unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to a high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store the original database at a secure secondary storage. We have implemented our scheme and results show the success rate is limited to 11% even when 48% tuples are modified.
Resumo:
Mycobacterium kansasii is a pulmonary pathogen that has been grown readily from municipal water, but rarely isolated from natural waters. A definitive link between water exposure and disease has not been demonstrated and the environmental niche for this organism is poorly understood. Strain typing of clinical isolates has revealed seven subtypes with Type 1 being highly clonal and responsible for most infections worldwide. The prevalence of other subtypes varies geographically. In this study 49 water isolates are compared with 72 patient isolates from the same geographical area (Brisbane, Australia), using automated repetitive unit PCR (Diversilab) and ITS RFLP. The clonality of the dominant clinical strain type is again demonstrated but with rep-PCR, strain variation within this group is evident comparable with other reported methods. There is significant heterogeneity of water isolates and very few are similar or related to the clinical isolates. This suggests that if water or aerosol transmission is the mode of infection, then point source contamination likely occurs from an alternative environmental source.
Resumo:
A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.
Resumo:
Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.
Resumo:
Database watermarking has received significant research attention in the current decade. Although, almost all watermarking models have been either irreversible (the original relation cannot be restored from the watermarked relation) and/or non-blind (requiring original relation to detect the watermark in watermarked relation). This model has several disadvantages over reversible and blind watermarking (requiring only watermarked relation and secret key from which the watermark is detected and original relation is restored) including inability to identify rightful owner in case of successful secondary watermarking, inability to revert the relation to original data set (required in high precision industries) and requirement to store unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store original database at a secure secondary storage.
Analysis of strain-rate dependent mechanical behavior of single chondrocyte : a finite element study
Resumo:
Various studies have been conducted to investigate the effects of impact loading on cartilage damage and chondrocyte death. These have shown that the rate and magnitude of the applied strain significantly influence chondrocyte death, and that cell death occurred mostly in the superficial zone of cartilage suggesting the need to further understand the fundamental mechanisms underlying the chondrocytes death induced at certain levels of strain-rate. To date there is no comprehensive study providing insight on this phenomenon. The aim of this study is to examine the strain-rate dependent behavior of a single chondrocyte using a computational approach based on Finite Element Method (FEM). An FEM model was developed using various mechanical models, which were Standard Neo-Hookean Solid (SnHS), porohyperelastic (PHE) and poroviscohyperelastic (PVHE) to simulate Atomic Force Microscopy (AFM) experiments of chondrocyte. The PVHE showed, it can capture both relaxation and loading rate dependent behaviors of chondrocytes, accurately compared to other models.
Resumo:
Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.
Resumo:
This study determined differences between computer workers with varying levels of neck pain in terms of work stressors, employee strain, electromyography (EMG) amplitude and heart rate response to various tasks. Participants included 85 workers (33, no pain; 38, mild pain; 14, moderate pain) and 22 non-working controls. Work stressors evaluated were job demands, decision authority, and social support. Heart rate was recorded during three tasks: copy-typing, typing with superimposed stress and a colour word task. Measures included electromyography signals from the sternocleidomastoid (SCM), anterior scalene (AS), cervical extensor (CE) and upper trapezius (UT) muscles bilaterally. Results showed no difference between groups in work stressors or employee strain measures. Workers with and without pain had higher measured levels of EMG amplitude in SCM, AS and CE muscles during the tasks than controls (all P < 0.02). In workers with neck pain, the UT had difficulty in switching off on completion of tasks compared with controls and workers without pain. There was an increase in heart rate, perceived tension and pain and decrease in accuracy for all groups during the stressful tasks with symptomatic workers producing more typing errors than controls and workers without pain. These findings suggest an altered muscle recruitment pattern in the neck flexor and extensor muscles. Whether this is a consequence or source of the musculoskeletal disorder cannot be determined from this study. It is possible that workers currently without symptoms may be at risk of developing a musculoskeletal disorder.
Resumo:
Does job control act as a stress-buffer when employees' type and level of work self-determination is taken into account? It was anticipated that job control would only be stress-buffering for employees high in self-determined and low in non-self-determined work motivation. In contrast, job control would be stress-exacerbating for employees who were low in self-determined and high in non-self-determined work motivation. Employees of a health insurance organization (N = 123) completed a survey on perceptions of role overload, job control, work self-determination, and a range of strain and engagement indicators. Results revealed that, when individuals high in self-determination perceived high job control, they experienced greater engagement (in the form of dedication to their work). In addition, when individuals high in non-self-determination perceived high job demands, they experienced more health complaints. A significant 3-way interaction demonstrated that, for individuals low in non-self-determination, high job control had the anticipated stress-buffering effect on engagement (in the form of absorption in their work). In addition, low job control was stress-exacerbating. However, contrary to expectations, for those high in non-self-determination, high job control was just as useful as low job control as a stress-buffer. The practical applications of these findings to the organizational context are discussed.