893 resultados para stochastic volatility diffusions
Resumo:
This contribution builds upon a former paper by the authors (Lipps and Betz 2004), in which a stochastic population projection for East- and West Germany is performed. Aim was to forecast relevant population parameters and their distribution in a consistent way. We now present some modifications, which have been modelled since. First, population parameters for the entire German population are modelled. In order to overcome the modelling problem of the structural break in the East during reunification, we show that the adaptation process of the relevant figures by the East can be considered to be completed by now. As a consequence, German parameters can be modelled just by using the West German historic patterns, with the start-off population of entire Germany. Second, a new model to simulate age specific fertility rates is presented, based on a quadratic spline approach. This offers a higher flexibility to model various age specific fertility curves. The simulation results are compared with the scenario based official forecasts for Germany in 2050. Exemplary for some population parameters (e.g. dependency ratio), it can be shown that the range spanned by the medium and extreme variants correspond to the s-intervals in the stochastic framework. It seems therefore more appropriate to treat this range as a s-interval covering about two thirds of the true distribution.
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
Resumo:
A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.
Resumo:
Executive Summary The unifying theme of this thesis is the pursuit of a satisfactory ways to quantify the riskureward trade-off in financial economics. First in the context of a general asset pricing model, then across models and finally across country borders. The guiding principle in that pursuit was to seek innovative solutions by combining ideas from different fields in economics and broad scientific research. For example, in the first part of this thesis we sought a fruitful application of strong existence results in utility theory to topics in asset pricing. In the second part we implement an idea from the field of fuzzy set theory to the optimal portfolio selection problem, while the third part of this thesis is to the best of our knowledge, the first empirical application of some general results in asset pricing in incomplete markets to the important topic of measurement of financial integration. While the first two parts of this thesis effectively combine well-known ways to quantify the risk-reward trade-offs the third one can be viewed as an empirical verification of the usefulness of the so-called "good deal bounds" theory in designing risk-sensitive pricing bounds. Chapter 1 develops a discrete-time asset pricing model, based on a novel ordinally equivalent representation of recursive utility. To the best of our knowledge, we are the first to use a member of a novel class of recursive utility generators to construct a representative agent model to address some long-lasting issues in asset pricing. Applying strong representation results allows us to show that the model features countercyclical risk premia, for both consumption and financial risk, together with low and procyclical risk free rate. As the recursive utility used nests as a special case the well-known time-state separable utility, all results nest the corresponding ones from the standard model and thus shed light on its well-known shortcomings. The empirical investigation to support these theoretical results, however, showed that as long as one resorts to econometric methods based on approximating conditional moments with unconditional ones, it is not possible to distinguish the model we propose from the standard one. Chapter 2 is a join work with Sergei Sontchik. There we provide theoretical and empirical motivation for aggregation of performance measures. The main idea is that as it makes sense to apply several performance measures ex-post, it also makes sense to base optimal portfolio selection on ex-ante maximization of as many possible performance measures as desired. We thus offer a concrete algorithm for optimal portfolio selection via ex-ante optimization over different horizons of several risk-return trade-offs simultaneously. An empirical application of that algorithm, using seven popular performance measures, suggests that realized returns feature better distributional characteristics relative to those of realized returns from portfolio strategies optimal with respect to single performance measures. When comparing the distributions of realized returns we used two partial risk-reward orderings first and second order stochastic dominance. We first used the Kolmogorov Smirnov test to determine if the two distributions are indeed different, which combined with a visual inspection allowed us to demonstrate that the way we propose to aggregate performance measures leads to portfolio realized returns that first order stochastically dominate the ones that result from optimization only with respect to, for example, Treynor ratio and Jensen's alpha. We checked for second order stochastic dominance via point wise comparison of the so-called absolute Lorenz curve, or the sequence of expected shortfalls for a range of quantiles. As soon as the plot of the absolute Lorenz curve for the aggregated performance measures was above the one corresponding to each individual measure, we were tempted to conclude that the algorithm we propose leads to portfolio returns distribution that second order stochastically dominates virtually all performance measures considered. Chapter 3 proposes a measure of financial integration, based on recent advances in asset pricing in incomplete markets. Given a base market (a set of traded assets) and an index of another market, we propose to measure financial integration through time by the size of the spread between the pricing bounds of the market index, relative to the base market. The bigger the spread around country index A, viewed from market B, the less integrated markets A and B are. We investigate the presence of structural breaks in the size of the spread for EMU member country indices before and after the introduction of the Euro. We find evidence that both the level and the volatility of our financial integration measure increased after the introduction of the Euro. That counterintuitive result suggests the presence of an inherent weakness in the attempt to measure financial integration independently of economic fundamentals. Nevertheless, the results about the bounds on the risk free rate appear plausible from the view point of existing economic theory about the impact of integration on interest rates.
Resumo:
We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.
Resumo:
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.
Resumo:
Stochastic processes defined by a general Langevin equation of motion where the noise is the non-Gaussian dichotomous Markov noise are studied. A non-FokkerPlanck master differential equation is deduced for the probability density of these processes. Two different models are exactly solved. In the second one, a nonequilibrium bimodal distribution induced by the noise is observed for a critical value of its correlation time. Critical slowing down does not appear in this point but in another one.
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
Semiclassical Einstein-Langevin equations for arbitrary small metric perturbations conformally coupled to a massless quantum scalar field in a spatially flat cosmological background are derived. Use is made of the fact that for this problem the in-in or closed time path effective action is simply related to the Feynman-Vernon influence functional which describes the effect of the ``environment,'' the quantum field which is coarse grained here, on the ``system,'' the gravitational field which is the field of interest. This leads to identify the dissipation and noise kernels in the in-in effective action, and to derive a fluctuation-dissipation relation. A tensorial Gaussian stochastic source which couples to the Weyl tensor of the spacetime metric is seen to modify the usual semiclassical equations which can be veiwed now as mean field equsations. As a simple application we derive the correlation functions of the stochastic metric fluctuations produced in a flat spacetime with small metric perturbations due to the quantum fluctuations of the matter field coupled to these perturbations.
Resumo:
We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.
Resumo:
In the first part of this paper, we show that the semiclassical Einstein-Langevin equation, introduced in the framework of a stochastic generalization of semiclassical gravity to describe the back reaction of matter stress-energy fluctuations, can be formally derived from a functional method based on the influence functional of Feynman and Vernon. In the second part, we derive a number of results for background solutions of semiclassical gravity consisting of stationary and conformally stationary spacetimes and scalar fields in thermal equilibrium states. For these cases, fluctuation-dissipation relations are derived. We also show that particle creation is related to the vacuum stress-energy fluctuations and that it is enhanced by the presence of stochastic metric fluctuations.
Resumo:
The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational fluctuations in stochastic semiclassical gravity have a non-perturbative behavior in some characteristic correlation lengths.
Resumo:
In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.