944 resultados para stereo vision,stereo matching,cuda,lisp,connection machine
Resumo:
It is well known that image processing requires a huge amount of computation, mainly at low level processing where the algorithms are dealing with a great number of data-pixel. One of the solutions to estimate motions involves detection of the correspondences between two images. For normalised correlation criteria, previous experiments shown that the result is not altered in presence of nonuniform illumination. Usually, hardware for motion estimation has been limited to simple correlation criteria. The main goal of this paper is to propose a VLSI architecture for motion estimation using a matching criteria more complex than Sum of Absolute Differences (SAD) criteria. Today hardware devices provide many facilities for the integration of more and more complex designs as well as the possibility to easily communicate with general purpose processors
Resumo:
Omnidirectional cameras offer a much wider field of view than the perspective ones and alleviate the problems due to occlusions. However, both types of cameras suffer from the lack of depth perception. A practical method for obtaining depth in computer vision is to project a known structured light pattern on the scene avoiding the problems and costs involved by stereo vision. This paper is focused on the idea of combining omnidirectional vision and structured light with the aim to provide 3D information about the scene. The resulting sensor is formed by a single catadioptric camera and an omnidirectional light projector. It is also discussed how this sensor can be used in robot navigation applications
Resumo:
The absolute necessity of obtaining 3D information of structured and unknown environments in autonomous navigation reduce considerably the set of sensors that can be used. The necessity to know, at each time, the position of the mobile robot with respect to the scene is indispensable. Furthermore, this information must be obtained in the least computing time. Stereo vision is an attractive and widely used method, but, it is rather limited to make fast 3D surface maps, due to the correspondence problem. The spatial and temporal correspondence among images can be alleviated using a method based on structured light. This relationship can be directly found codifying the projected light; then each imaged region of the projected pattern carries the needed information to solve the correspondence problem. We present the most significant techniques, used in recent years, concerning the coded structured light method
Resumo:
La visió és probablement el nostre sentit més dominant a partir del qual derivem la majoria d'informació del món que ens envolta. A través de la visió podem percebre com són les coses, on són i com es mouen. En les imatges que percebem amb el nostre sistema de visió podem extreure'n característiques com el color, la textura i la forma, i gràcies a aquesta informació som capaços de reconèixer objectes fins i tot quan s'observen sota unes condicions totalment diferents. Per exemple, som capaços de distingir un mateix objecte si l'observem des de diferents punts de vista, distància, condicions d'il·luminació, etc. La Visió per Computador intenta emular el sistema de visió humà mitjançant un sistema de captura d'imatges, un ordinador, i un conjunt de programes. L'objectiu desitjat no és altre que desenvolupar un sistema que pugui entendre una imatge d'una manera similar com ho realitzaria una persona. Aquesta tesi es centra en l'anàlisi de la textura per tal de realitzar el reconeixement de superfícies. La motivació principal és resoldre el problema de la classificació de superfícies texturades quan han estat capturades sota diferents condicions, com ara distància de la càmera o direcció de la il·luminació. D'aquesta forma s'aconsegueix reduir els errors de classificació provocats per aquests canvis en les condicions de captura. En aquest treball es presenta detalladament un sistema de reconeixement de textures que ens permet classificar imatges de diferents superfícies capturades en diferents condicions. El sistema proposat es basa en un model 3D de la superfície (que inclou informació de color i forma) obtingut mitjançant la tècnica coneguda com a 4-Source Colour Photometric Stereo (CPS). Aquesta informació és utilitzada posteriorment per un mètode de predicció de textures amb l'objectiu de generar noves imatges 2D de les textures sota unes noves condicions. Aquestes imatges virtuals que es generen seran la base del nostre sistema de reconeixement, ja que seran utilitzades com a models de referència per al nostre classificador de textures. El sistema de reconeixement proposat combina les Matrius de Co-ocurrència per a l'extracció de característiques de textura, amb la utilització del Classificador del veí més proper. Aquest classificador ens permet al mateix temps aproximar la direcció d'il·luminació present en les imatges que s'utilitzen per testejar el sistema de reconeixement. És a dir, serem capaços de predir l'angle d'il·luminació sota el qual han estat capturades les imatges de test. Els resultats obtinguts en els diferents experiments que s'han realitzat demostren la viabilitat del sistema de predicció de textures, així com del sistema de reconeixement.
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
In the U.K., dental students require to perform training and practice on real human tissues at the very early stage of their courses. Currently, the human tissues, such as decayed teeth, are mounted in a human head like physical model. The problems with these models in teaching are; (1) every student operates on tooth, which are always unique; (2) the process cannot be recorded for examination purposes and (3) same training are not repeatable. The aim of the PHATOM Project is to develop a dental training system using Haptic technology. This paper documents the project background, specification, research and development of the first prototype system. It also discusses the research in the visual display, haptic devices and haptic rendering. This includes stereo vision, motion parallax, volumetric modelling, surface remapping algorithms as well as analysis design of the system. A new volumetric to surface model transformation algorithm is also introduced. This paper includes the future work on the system development and research.
Resumo:
In this paper a look is taken at how the use of implant technology can be used to either increase the range of the abilities of a human and/or diminish the effects of a neural illness, such as Parkinson's Disease. The key element is the need for a clear interface linking the human brain directly with a computer. The area of interest here is the use of implant technology, particularly where a connection is made between technology and the human brain and/or nervous system. Pilot tests and experimentation are invariably carried out apriori to investigate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies are discussed here. The paper goes on to describe human experimentation, in particular that carried out by the author himself, which led to him receiving a neural implant which linked his nervous system bi-directionally with the internet. With this in place neural signals were transmitted to various technological devices to directly control them. In particular, feedback to the brain was obtained from the fingertips of a robot hand and ultrasonic (extra) sensory input. A view is taken as to the prospects for the future, both in the near term as a therapeutic device and in the long term as a form of enhancement.
Resumo:
The interface between humans and technology is a rapidly changing field. In particular as technological methods have improved dramatically so interaction has become possible that could only be speculated about even a decade earlier. This interaction can though take on a wide range of forms. Indeed standard buttons and dials with televisual feedback are perhaps a common example. But now virtual reality systems, wearable computers and most of all, implant technology are throwing up a completely new concept, namely a symbiosis of human and machine. No longer is it sensible simply to consider how a human interacts with a machine, but rather how the human-machine symbiotic combination interacts with the outside world. In this paper we take a look at some of the recent approaches, putting implant technology in context. We also consider some specific practical examples which may well alter the way we look at this symbiosis in the future. The main area of interest as far as symbiotic studies are concerned is clearly the use of implant technology, particularly where a connection is made between technology and the human brain and/or nervous system. Often pilot tests and experimentation has been carried out apriori to investigate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies are discussed briefly here. The paper however concentrates on human experimentation, in particular that carried out by the authors themselves, firstly to indicate what possibilities exist as of now with available technology, but perhaps more importantly to also show what might be possible with such technology in the future and how this may well have extensive social effects. The driving force behind the integration of technology with humans on a neural level has historically been to restore lost functionality in individuals who have suffered neurological trauma such as spinal cord damage, or who suffer from a debilitating disease such as lateral amyotrophic sclerosis. Very few would argue against the development of implants to enable such people to control their environment, or some aspect of their own body functions. Indeed this technology in the short term has applications for amelioration of symptoms for the physically impaired, such as alternative senses being bestowed on a blind or deaf individual. However the issue becomes distinctly more complex when it is proposed that such technology be used on those with no medical need, but instead who wish to enhance and augment their own bodies, particularly in terms of their mental attributes. These issues are discussed here in the light of practical experimental test results and their ethical consequences.
Resumo:
The perspex machine arose from the unification of projective geometry with the Turing machine. It uses a total arithmetic, called transreal arithmetic, that contains real arithmetic and allows division by zero. Transreal arithmetic is redefined here. The new arithmetic has both a positive and a negative infinity which lie at the extremes of the number line, and a number nullity that lies off the number line. We prove that nullity, 0/0, is a number. Hence a number may have one of four signs: negative, zero, positive, or nullity. It is, therefore, impossible to encode the sign of a number in one bit, as floating-, point arithmetic attempts to do, resulting in the difficulty of having both positive and negative zeros and NaNs. Transrational arithmetic is consistent with Cantor arithmetic. In an extension to real arithmetic, the product of zero, an infinity, or nullity with its reciprocal is nullity, not unity. This avoids the usual contradictions that follow from allowing division by zero. Transreal arithmetic has a fixed algebraic structure and does not admit options as IEEE, floating-point arithmetic does. Most significantly, nullity has a simple semantics that is related to zero. Zero means "no value" and nullity means "no information." We argue that nullity is as useful to a manufactured computer as zero is to a human computer. The perspex machine is intended to offer one solution to the mind-body problem by showing how the computable aspects of mind and. perhaps, the whole of mind relates to the geometrical aspects of body and, perhaps, the whole of body. We review some of Turing's writings and show that he held the view that his machine has spatial properties. In particular, that it has the property of being a 7D lattice of compact spaces. Thus, we read Turing as believing that his machine relates computation to geometrical bodies. We simplify the perspex machine by substituting an augmented Euclidean geometry for projective geometry. This leads to a general-linear perspex-machine which is very much easier to pro-ram than the original perspex-machine. We then show how to map the whole of perspex space into a unit cube. This allows us to construct a fractal of perspex machines with the cardinality of a real-numbered line or space. This fractal is the universal perspex machine. It can solve, in unit time, the halting problem for itself and for all perspex machines instantiated in real-numbered space, including all Turing machines. We cite an experiment that has been proposed to test the physical reality of the perspex machine's model of time, but we make no claim that the physical universe works this way or that it has the cardinality of the perspex machine. We leave it that the perspex machine provides an upper bound on the computational properties of physical things, including manufactured computers and biological organisms, that have a cardinality no greater than the real-number line.
Resumo:
We introduce the perspex machine which unifies projective geometry and the Turing machine, resulting in a supra-Turing machine. Specifically, we show that a Universal Register Machine (URM) can be implemented as a conditional series of whole numbered projective transformations. This leads naturally to a suggestion that it might be possible to construct a perspex machine as a series of pin-holes and stops. A rough calculation shows that an ultraviolet perspex machine might operate up to the petahertz range of operations per second. Surprisingly, we find that perspex space is irreversible in time, which might make it a candidate for an anisotropic spacetime geometry in physical theories. We make a bold hypothesis that the apparent irreversibility of physical time is due to the random nature of quantum events, but suggest that a sum over histories might be achieved by sampling fluctuations in the direction of time flow. We propose an experiment, based on the Casimir apparatus, that should measure fluctuations of time flow with respect to time duration- if such fluctuations exist.