932 resultados para spatial information processing theories
Resumo:
The increasing practice of offshore outsourcing software maintenance has posed the challenge of effectively transferring knowledge to individual software engineers of the vendor. In this theoretical paper, we discuss the implications of two learning theories, the model of work-based learning (MWBL) and cognitive load theory (CLT), for knowledge transfer during the transition phase. Taken together, the theories suggest that learning mechanisms need to be aligned with the type of knowledge (tacit versus explicit), task characteristics (complexity and recurrence), and the recipients’ expertise. The MWBL proposes that learning mechanisms need to include conceptual and practical activities based on the relative importance of explicit and tacit knowledge. CLT explains how effective portfolios of learning mechanisms change over time. While jobshadowing, completion tasks, and supportive information may prevail at the outset of transition, they may be replaced by the work on conventional tasks towards the end of transition.
Resumo:
In this study we investigated whether synaesthesia is associated with a particular cognitive style. Cognitive style refers to preferred modes of information processing, such as a verbal style or a visual style. We reasoned that related to the enriched world of experiences created by synaesthesia, its association with enhanced verbal and visual memory, higher imagery and creativity, synaesthetes might show enhanced preference for a verbal as well as for a visual cognitive style compared to non-synaesthetes. In Study 1 we tested a large convenience sample of 1046 participants, who classified themselves as grapheme-color, sound-color, lexical-gustatory, sequence-space, or as non-synaesthetes. To assess cognitive style, we used the revised verbalizer-visualizer questionnaire (VVQ), which involves three independent cognitive style dimensions (verbal style, visual-spatial style, and vivid imagery style). The most important result was that those who reported grapheme-color synaesthesia showed higher ratings on the verbal and vivid imagery style dimensions, but not on the visual-spatial style dimension. In Study 2 we replicated this finding in a laboratory study involving 24 grapheme-color synaesthetes with objectively confirmed synaesthesia and a closely matched control group. Our results indicate that grapheme-color synaesthetes prefer both a verbal and a specific visual cognitive style. We suggest that this enhanced preference, probably together with the greater ease to switch between a verbal and a vivid visual imagery style, may be related to cognitive advantages associated with grapheme color synaesthesia such as enhanced memory performance and creativity.
Resumo:
Strategies of cognitive control are helpful in reducing anxiety experienced during anticipation of unpleasant or potentially unpleasant events. We investigated the associated cerebral information processing underlying the use of a specific cognitive control strategy during the anticipation of affect-laden events. Using functional magnetic resonance imaging, we examined differential brain activity during anticipation of events of unknown and negative emotional valence in a group of eighteen healthy subjects that used a cognitive control strategy, similar to "reality checking" as used in psychotherapy, compared with a group of sixteen subjects that did not exert cognitive control. While expecting unpleasant stimuli, the "cognitive control" group showed higher activity in left medial and dorsolateral prefrontal cortex areas but reduced activity in the left extended amygdala, pulvinar/lateral geniculate nucleus and fusiform gyrus. Cognitive control during the "unknown" expectation was associated with reduced amygdalar activity as well and further with reduced insular and thalamic activity. The amygdala activations associated with cognitive control correlated negatively with the reappraisal scores of an emotion regulation questionnaire. The results indicate that cognitive control of particularly unpleasant emotions is associated with elevated prefrontal cortex activity that may serve to attenuate emotion processing in for instance amygdala, and, notably, in perception related brain areas.
Resumo:
Several componential emotion theories suggest that appraisal outcomes trigger characteristic somatovisceral changes that facilitate information processing and prepare the organism for adaptive behavior. The current study tested predictions derived from Scherer's Component Process Model. Participants viewed unpleasant and pleasant pictures (intrinsic pleasantness appraisal) and were asked to concurrently perform either an arm extension or an arm flexion, leading to an increase or a decrease in picture size. Increasing pleasant stimuli and decreasing unpleasant stimuli were considered goal conducive; decreasing pleasant stimuli and increasing unpleasant stimuli were considered goal obstructive (goal conduciveness appraisal). Both appraisals were marked by several somatovisceral changes (facial electromyogram, heart rate (HR)). As predicted, the changes induced by the two appraisals showed similar patterns. Furthermore, HR results, compared with data of earlier studies, suggest that the adaptive consequences of both appraisals may be mediated by stimulus proximity.
Resumo:
Considerable evidence suggests that central cholinergic neurons participate in either acquisition, storage or retrieval of information. Experiments were designed to evaluate information processing in mice following either reversible or irreversible impairment in central cholinergic activity. The cholinergic receptor antagonists, atropine and methylatropine were used to reversibly inhibit cholinergic transmission. Irreversible impairment in central cholinergic function was achieved by central administration of the cholinergic-specific neurotoxins, N-ethyl-choline aziridinium (ECA) and N-ethyl-acetylcholine aziridinium (EACA).^ ECA and EACA appear to act by irreversible inhibition of high affinity choline uptake (proposed rate-limiting step in acetylcholine synthesis). Intraventricular administration of ECA or EACA produced persistent reduction in hippocampal choline acetyltransferase activity. Other neuronal systems and brain regions showed no evidence of toxicity.^ Mice treated with either ECA or EACA showed behavioral deficits associated with cholinergic dysfunction. Passive avoidance behavior was significantly impaired by cholinotoxin treatment. Radial arm maze performance was also significantly impaired in cholinotoxin-treated animals. Deficits in radial arm maze performance were transient, however, such that rapid and apparent complete behavioral recovery was seen during retention testing. The centrally active cholinergic receptor antagonist atropine also caused significant impairment in radial arm maze behavior, while equivalent doses of methylatropine were without effect.^ The relative effects of cholinotoxin and receptor antagonist treatment on short-term (working) memory and long-term (reference) memory in radial arm maze behavior were examined. Maze rotation studies indicated that there were at least two different response strategies which could result in accurate maze performance. One strategy involved the use of response algorithms and was considered to be a function of reference memory. Another strategy appeared to be primarily dependent on spatial working memory. However, all behavioral paradigms with multiple trails have reference memory requirements (i.e. information useful over all trials). Performance was similarly affected following either cholinotoxin or anticholinergic treatment, regardless of the response strategy utilized. In addition, rates of behavioral recovery following cholinotoxin treatment were similar between response groups. It was concluded that both cholinotoxin and anticholinergic treatment primarily resulted in impaired reference memory processes. ^
Resumo:
Background. Among Hispanics, the HPV vaccine has the potential to eliminate disparities in cervical cancer incidence and mortality but only if optimal rates of vaccination are achieved. Media can be an important information source for increasing HPV knowledge and awareness of the vaccine. Very little is known about how media use among Hispanics affects their HPV knowledge and vaccine awareness. Even less is known about what differences exist in media use and information processing among English- and Spanish-speaking Hispanics.^ Aims. Examine the relationships between three health communication variables (media exposure, HPV-specific information scanning and seeking) and three HPV outcomes (knowledge, vaccine awareness and initiation) among English- and Spanish-speaking Hispanics.^ Methods. Cross-sectional data from a survey administered to Hispanic mothers in Dallas, Texas was used for univariate and multivariate logistic regression analyses. Sample used for analysis included 288 mothers of females aged 8-22 recruited from clinics and community events. Dependent variables of interest were HPV knowledge, HPV vaccine awareness and initiation. Independent variables were media exposure, HPV-specific information scanning and seeking. Language was tested as an effect modifier on the relationship between health communication variables and HPV outcomes.^ Results. English-speaking mothers reported more media exposure, HPV-specific information scanning and seeking than Spanish-speakers. Scanning for HPV information was associated with more HPV knowledge (OR = 4.26, 95% CI = 2.41 - 7.51), vaccine awareness (OR = 10.01, 95% CI = 5.43 - 18.47) and vaccine initiation (OR = 2.54, 95% CI = 1.09 - 5.91). Seeking HPV-specific information was associated with more knowledge (OR = 2.27, 95% CI = 1.23 - 4.16), awareness (OR = 6.60, 95% CI = 2.74 - 15.91) and initiation (OR = 4.93, 95% CI = 2.64 - 9.20). Language moderated the effect of information scanning and seeking on vaccine awareness.^ Discussion. Differences in information scanning and seeking behaviors among Hispanic subgroups have the potential to lead to disparities in vaccine awareness.^ Conclusion. Findings from this study underscore health communication differences among Hispanics and emphasize the need to target Spanish language media as well as English language media aimed at Hispanics to improve knowledge and awareness.^
Resumo:
El objetivo de este trabajo fue desarrollar una metodología de procesamiento de información espacial basada en un Sistema de Información Geográfica (SIG), para la determinación del balance de energía en unidades de tierra (UT) definidas en una cuenca hidrográfica rural. Se determinaron las UT a partir de mapas de unidades de paisaje y de mapas de estratos de superficie operada por productor. Se caracterizaron los ingresos (IE) y egresos energéticos (EE) en los sistemas de producción agrícolas. Se calculó la energía neta (EN) y la relación EE/IE (Re). Los datos se analizaron mediante un ANVA (p < 0,05). Los parámetros IE, EE, EN y Re no fueron significativamente diferentes entre UT, por lo que se infiere que el modelo productivo actualmente desarrollado, desde el punto de vista energético, resulta similar. Se hallaron relaciones de interés entre las variables de estudio y su ubicación geográfica, lo que permite recomendar para los sistemas agrícolas de una cuenca rural la planificación general del uso de la energía considerando las capacidades de los SIG.
Resumo:
Spatial data are being increasingly used in a wide range of disciplines, a fact that is clearly reflected in the recent trend to add spatial dimensions to the conventional social sciences. Economics is by no means an exception. On one hand, spatial data are indispensable to many branches of economics such as economic geography, new economic geography, or spatial economics. On the other hand, macroeconomic data are becoming available at more and more micro levels, so that academics and analysts take it for granted that they are available not only for an entire country, but also for more detailed levels (e.g. state, province, and even city). The term ‘spatial economics data’ as used in this report refers to any economic data that has spatial information attached. This spatial information can be the coordinates of a location at best or a less precise place name as is used to describe administrative units. Obviously, the latter cannot be used without a map of corresponding administrative units. Maps are therefore indispensible to the analysis of spatial economic data without absolute coordinates. The aim of this report is to review the availability of spatial economic data that pertains specifically to Laos and academic studies conducted on such data up to the present. In regards to the availability of spatial economic data, efforts have been made to identify not only data that has been made available as geographic information systems (GIS) data, but also those with sufficient place labels attached. The rest of the report is organized as follows. Section 2 reviews the maps available for Laos, both in hard copy and editable electronic formats. Section 3 summarizes the spatial economic data available for Laos at the present time, and Section 4 reviews and categorizes the many economic studies utilizing these spatial data. Section 5 give examples of some of the spatial industrial data collected for this research. Section 6 provides a summary of the findings and gives some indication of the direction of the final report due for completion in fiscal 2010.
Resumo:
Once admitted the advantages of object-based classification compared to pixel-based classification; the need of simple and affordable methods to define and characterize objects to be classified, appears. This paper presents a new methodology for the identification and characterization of objects at different scales, through the integration of spectral information provided by the multispectral image, and textural information from the corresponding panchromatic image. In this way, it has defined a set of objects that yields a simplified representation of the information contained in the two source images. These objects can be characterized by different attributes that allow discriminating between different spectral&textural patterns. This methodology facilitates information processing, from a conceptual and computational point of view. Thus the vectors of attributes defined can be used directly as training pattern input for certain classifiers, as for example artificial neural networks. Growing Cell Structures have been used to classify the merged information.
Resumo:
Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier
Resumo:
Este proyecto de fin de carrera tiene como objetivo obtener una visión detallada de los sistemas y tecnologías de grabación y reproducción utilizadas para aplicaciones de audio 3D y entornos de realidad virtual, analizando las diferentes alternativas existentes, su funcionamiento, características, detalles técnicos y sus ámbitos de aplicación. Como punto de partida se estudiará la teoría psicoacústica y la localización de fuentes sonoras en el espacio, base para el estudio de los sistemas de audio 3D. Se estudiará tanto la espacialización sonora en un espacio real y la espacialización virtual (simulación mediante procesado de información de la localización de fuentes sonoras), en los que intervienen algunos fenómenos acústicos y psicoacústicos como ITD, o diferencia de tiempo que existe entre una señal acústica que llega a los pabellones auditivos, la ILD, o diferencia de intensidad o amplitud que hay entre la señal que llega a los pabellones auditivos y la localización espacial mediante otra serie de mecanismos biaurales. Tras una visión general de la teoría psicoacústica y la espacialización sonora, se analizarán con detalle los elementos de grabación y reproducción existentes para audio 3D. Concretamente, a lo largo del proyecto se profundizará en el funcionamiento del sistema estéreo, caracterizado por el posicionamiento sonoro mediante la utilización de dos canales; del sistema biaural, caracterizado por reconstruir campos sonoros mediante el uso de las HRTF; de los sistemas multicanal, detallando gran parte de las alternativas y configuraciones existentes; del sistema Ambiophonics, caracterizado por implementar filtros de cruce; del sistema Ambisonics, y sus diferentes formatos y técnicas de codificación y decodificación; y del sistema Wavefield Synthesis, caracterizado por recrear ambientes sonoros en grandes espacios. ABSTRACT This project aims to get a detailed view of recording and reproducing systems and technologies used to 3D audio applications and virtual reality environments, analyzing the different alternatives available, their functioning, features, technical details and their different scopes of applications. As a starting point, will be studied the psychoacoustic theory and the localization of sound sources in space, basis for the 3D audio study. Will be studied both the spacialization of sound sources in real space as virtual spatialization of sound sources (simulation by information processing of localization of sound sources), in which involves some acoustic and psychoacoustic phenomena like ITD (or the Interaural time difference), the ILD, (or the Interaural Level Difference) and spatial localization by another set of binaural mechanisms. After a general overview of the psychoacoustics theory and the sound spatialization, will be analyzed in detail existing methods of recording and reproducing for 3D audio. Specifically, during the project will analyze the characteristics of the stereo systems, characterized by sound positioning using two channels; the binaural systems, characterized by reconstructing sound fields by using the HRTF; the multichannel systems, detailing many of the existing alternatives and configurations; the Ambiophonics system, which is characterized by implementing crosstalk elimination techniques; the Ambiosonics system, and its various formats and encoding and decoding techniques; and the Wavefield Synthesis system, characterized by recreate soundscapes in large spaces.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
In order to establish an active internal know-how -reserve~ in an information processing and engineering services . company, a training architecture tailored to the company as an whole must be defined. When a company' s earnings come from . advisory services dynamically structured i.n the form of projects, as is the case at hand, difficulties arise that must be taken into account in the architectural design. The first difficulties are of a psychological nature and the design method proposed here begjns wi th the definition of the highest training metasystem, which is aimed at making adjustments for the variety of perceptions of the company's human components, before the architecture can be designed. This approach may be considered as an application of the cybernetic Law of Requisita Variety (Ashby) and of the Principle of Conceptual Integrity (Brooks) . Also included is a description of sorne of the results of the first steps of metasystems at the level of company organization.
Resumo:
Accurate detection of liver lesions is of great importance in hepatic surgery planning. Recent studies have shown that the detection rate of liver lesions is significantly higher in gadoxetic acid-enhanced magnetic resonance imaging (Gd–EOB–DTPA-enhanced MRI) than in contrast-enhanced portal-phase computed tomography (CT); however, the latter remains essential because of its high specificity, good performance in estimating liver volumes and better vessel visibility. To characterize liver lesions using both the above image modalities, we propose a multimodal nonrigid registration framework using organ-focused mutual information (OF-MI). This proposal tries to improve mutual information (MI) based registration by adding spatial information, benefiting from the availability of expert liver segmentation in clinical protocols. The incorporation of an additional information channel containing liver segmentation information was studied. A dataset of real clinical images and simulated images was used in the validation process. A Gd–EOB–DTPA-enhanced MRI simulation framework is presented. To evaluate results, warping index errors were calculated for the simulated data, and landmark-based and surface-based errors were calculated for the real data. An improvement of the registration accuracy for OF-MI as compared with MI was found for both simulated and real datasets. Statistical significance of the difference was tested and confirmed in the simulated dataset (p < 0.01).
Resumo:
One of the most challenging problems that must be solved by any theoretical model purporting to explain the competence of the human brain for relational tasks is the one related with the analysis and representation of the internal structure in an extended spatial layout of múltiple objects. In this way, some of the problems are related with specific aims as how can we extract and represent spatial relationships among objects, how can we represent the movement of a selected object and so on. The main objective of this paper is the study of some plausible brain structures that can provide answers in these problems. Moreover, in order to achieve a more concrete knowledge, our study will be focused on the response of the retinal layers for optical information processing and how this information can be processed in the first cortex layers. The model to be reported is just a first trial and some major additions are needed to complete the whole vision process.