974 resultados para solid-shell element


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Nd and Sr isotopic compositions of Quaternary glacial and glacimarine siliciclastic sediments deposited along the margin of southeast Greenland were determined to assess the roles of the Greenland, Iceland, and more distal ice sheets in delivering detritus to this portion of the northern North Atlantic. The isotopic compositions of detritus generated by portions of the southern Greenland Ice Sheet were defined through measurements of till and trough mouth fan sediments. Massive diamicts from the Scoresby Sund trough mouth fan show a restricted range of e-Nd (-11.8 to -16.6) and 87Sr/86Sr (0.7192-0.7246) consistent with their derivation from mixtures of sediments derived from Paleoproterozoic and/or Caledonian basement and Tertiary Greenland basalts. Further south at Kangerlussuaq, till isotopic compositions covary with the underlying basement type, with low e-Nd values in the inner fiord (-18.1) reflecting the erosion of the local Precambrian gneisses, but with higher e-Nd values (-2.3 to 2.5) found where the trough crosses East Greenland Tertiary basalts. Fine-grained (< 63 µm) sediments deposited along the southeast Greenland margin also show regular spatial isotopic variations. Ambient sediments and ice-rafted detritus in the southern Irminger Basin trend towards low e-Nd values (to ~ -28) and 87Sr/86Sr ratios (~ 0.711 to ~ 0.715) and are likely derived from proximal Archean gneisses of SE Greenland. Further north in the northern Irminger and Blosseville Basins, sediments trend toward much higher e-Nd (> -4) and low 87Sr/86Sr (< 0.709) reflecting a component derived from the local Iceland volcanic rocks and/or the East Greenland Tertiary basalts. In all three regions, the locally-derived detritus is intermixed with sediment with an intermediate e-Nd value (~ -10) and 87Sr/86Sr (~ 0.718) that was likely delivered by icebergs emanating from the Eurasian Ice Sheets and not from eastern Greenland. Deposition of glacial sediments from both proximal and distal (Eurasian) sources occurred adjacent to SE Greenland throughout the past 50 Ka, with periodic increases in IRD deposition at various times including those of Heinrich events 1, 2 and 4. These results suggest that at least the southern portions of the Greenland Ice Sheet experienced periodic instabilities during the Last Glacial period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising anthropogenic CO2 in the surface ocean has raised serious concerns for the ability of calcifying organisms to secrete their shells and skeletons. Previous mollusc carbonate perturbation experiments report deleterious effects at lowered pH (7.8-7.4 pH units), including reduced shell length and thickness and deformed shell morphology. It is not clear whether the reduced shell growth results from a decrease in calcification rate due to lowered aragonite saturation or from an indirect effect on mollusc metabolism. We take a novel approach to discerning between these two processes by examining the impact of lowered pH on the 'vital-effect' associated with element ratios. Reported herein are the first element ratio (Sr/Ca, Ba/Ca, B/Ca, Mg/Ca and Mn/Ca) profiles throughout the larval life stage of Mytilus edulis. Element ratio data for individuals reared in ambient conditions provide new insights into biomineralization during larval development. Sr/Ca ratios are consistent with Sr incorporation in the mineral phase. Mg and Mn are likely hosted in an organic phase. The Ba partition coefficient of early larval shells is one of the highest reported in biogenic aragonite. The reason for the high Ba concentrations is unknown, but may reflect the assimilation of Ba from food and/or Ba concentration in an organic or amorphous carbonate phase. There is no observable difference in the way the studied elements are incorporated into the shells of individuals reared in ambient and lowered pH conditions. The reduced growth rate at lower pH may be a consequence of a disruption to the larval mollusc metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Zambezi deep-sea fan, the largest of its kind along the east African continental margin, is poorly studied to date, despite its potential to record marine and terrestrial climate signals in the southwest Indian Ocean. Therefore, gravity core GeoB 9309-1, retrieved from 1219 m water depth, was investigated for various geophysical (magnetic susceptibility, porosity, colour reflectance) and geochemical (pore water and sediment geochemistry, Fe and P speciation) properties. Onboard and onshore data documented a sulphate/methane transition (SMT) zone at ~ 450-530 cm sediment depth, where the simultaneous consumption of pore water sulphate and methane liberates hydrogen sulphide and bi-carbonate into the pore space. This leads to characteristic changes in the sediment and pore water chemistry, as the reduction of primary Fe (oxyhydr)oxides, the precipitation of Fe sulphides, and the mobilization of Fe (oxyhydr)oxide-bound P. These chemical processes also lead to a marked decrease in magnetic susceptibility. Below the SMT, we find a reduction of porosity, possibly due to pore space cementation by authigenic minerals. Formation of the observed geochemical, magnetic and mineralogical patterns requires a fixation of the SMT at this distinct sediment depth for a considerable time-which we calculated to be ~ 10 000 years assuming steady-state conditions-following a period of rapid upward migration towards this interval. We postulate that the worldwide sea-level rise at the last glacial/interglacial transition (~ 10 000 years B.P.) most probably caused the fixation of the SMT at its present position, through drastically reduced sediment delivery to the deep-sea fan. In addition, we report an internal redistribution of P occurring around the SMT, closely linked to the (de)coupling of sedimentary Fe and P, and leaving a characteristic pattern in the solid P record. By phosphate re-adsorption onto Fe (oxyhydr)oxides above, and formation of authigenic P minerals (e.g. vivianite) below the SMT, deep-sea fan deposits may potentially act as long-term sinks for P.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shells of the bivalve Arctica islandica are used to reconstruct paleo-environmental conditions (e.g. temperature) via biogeochemical proxies, i.e. biogenic components that are related closely to environmental parameters at the time of shell formation. Several studies have shown that proxies like element and isotope-ratios can be affected by shell growth and microstructure. Thus it is essential to evaluate the impact of changing environmental parameters such as high pCO2 and consequent changes in carbonate chemistry on shell properties to validate these biogeochemical proxies for a wider range of environmental conditions. Growth experiments with Arctica islandica from the Western Baltic Sea kept under different pCO2 levels (from 380 to 1120 µatm) indicate no affect of elevated pCO2 on shell growth or crystal microstructure, indicating that A. islandica shows an adaptation to a wider range of pCO2 levels than reported for other species. Accordingly, proxy information derived from A. islandica shells of this region contains no pCO2 related bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite intensive research on the different domains of the marine phosphorus (P) cycle during the last decades, frequently discussed open questions still exist especially on controlling factors for the benthic behaviour of P and its general distribution in sediment-pore water systems. Steady state or the internal balance of all relevant physical and (bio)geochemical processes are amongst the key issues. In this study we present and discuss an extended data set from surface sediments recovered from three locations on the NW African continental slope. Pore water data and results from sequential sediment extractions give clear evidence to the well-known close relationship between the benthic cycles of P and iron. Accordingly, most of the dissolved phosphate must have been released by microbially catalyzed reductive dissolution of iron (oxhydr)oxides. However, rates of release and association of P and iron, respectively, are not directly represented in profiles of element specific sediment compositions. Results from steady-state based transport-reaction modelling suggest that particle mixing due to active bioturbation, or rather a physical net downward transport of P associated to iron (oxyhydr)oxides, is an essential process for the balance of the inspected benthic cycles. This study emphasizes the importance of balancing analytical data for a comprehensive understanding of all processes involved in biogeochemical cycles.