976 resultados para soil microbial activity


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study was carried out on the main plots (Main Experiment) of a large grassland biodiversity experiment, the Jena Experiment. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. This data set consists of standard deviation (SD), mean and stability (stab) of soil microbial basal respiration (µl O2/h/g dry soil) and microbial biomass carbon (µg C/g dry soil). Data were derived by taking soil samples and measuring basal and substrate-induced microbial respiration with an oxygen-consumption apparatus. Samples for calculating the spatial stability of soil microbial properties were taken on the 20th of September in 2010. Oxygen consumption of soil microorganisms in fresh soil equivalent to 3.5 g dry weight was measured at 22°C over a period of 24 h. Basal respiration (µlO2/g dry soil/h) was calculated as mean of the oxygen consumption rates of hours 14 to 24 after the start of measurements. Substrate- induced respiration was determined by adding D-glucose to saturate catabolic enzymes of microorganisms according to preliminary studies (4 mg g-1 dry soil solved in 400 µl deionized water). Maximum initial respiratory response (µl O2/g dry soil/ h) was calculated as mean of the lowest three oxygen consumption values within the first 10 h after glucose addition. Microbial biomass carbon (µg C/g dry soil) was calculated as 38 × Maximum initial respiratory response according to prelimiray studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study was carried out on the main plots (Main Experiment) of a large grassland biodiversity experiment, the Jena Experiment. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. This data set consists of standard deviation (SD), mean and stability (stab) of soil microbial basal respiration (µl O2/h/g dry soil) and microbial biomass carbon (µg C/g dry soil). Data were derived by taking soil samples and measuring basal and substrate-induced microbial respiration with an oxygen-consumption apparatus. Samples for calculating the temporal stability were taken every year in May/June from 2003 to 2014, except in 2005. Oxygen consumption of soil microorganisms in fresh soil equivalent to 3.5 g dry weight was measured at 22°C over a period of 24 h. Basal respiration (µlO2/g dry soil/h) was calculated as mean of the oxygen consumption rates of hours 14 to 24 after the start of measurements. Substrate- induced respiration was determined by adding D-glucose to saturate catabolic enzymes of microorganisms according to preliminary studies (4 mg g-1 dry soil solved in 400 µl deionized water). Maximum initial respiratory response (µl O2/g dry soil/h) was calculated as mean of the lowest three oxygen consumption values within the first 10 h after glucose addition. Microbial biomass carbon (µg C/g dry soil) was calculated as 38 × Maximum initial respiratory response according to prelimiray studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biochar is a carbon-rich solid obtained by the thermal decomposition of organic matter under a limited supply of oxygen and at relatively low temperatures. Biochar can be prepared from the pyrolysis of different organic feed- stocks, such as wood and biomass crops, agricultural by-products, different types of waste or paper industry waste materials . The pyrolysis procedure of waste, i.e. sewage sludge, has mainly two advantages, firstly, it removes pathogens from waste and, secondly, biochar can reduce the leaching of heavy metals present in raw sewage sludge. This trend of the use of waste material as feedstocks to the preparation of biochar is increasing in the last years due to industrial development and economic growth imply an increase in waste generation. The application of biochar may have positive effects on soil physical properties as water holding capacity and structure or on soil biological activity and soil quality. Also, biochar can be used to remove water pollutants and can be used in multiple ways in soil remediation due to its adsorption of pesticides or metals. Also, biochar contribute to carbon sequestration due to carbon stability of biochar materials. The objective of this presentation is to review the positive effects of the biochar prepared from organic waste on soil properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El nitrógeno (N) y el fósforo (P) son nutrientes esenciales en la producción de cultivos. El desarrollo de los fertilizantes de síntesis durante el siglo XX permitió una intensificación de la agricultura y un aumento de las producciones pero a su vez el gran input de nutrientes ha resultado en algunos casos en sistemas poco eficientes incrementando las pérdidas de estos nutrientes al medio ambiente. En el caso del P, este problema se agrava debido a la escasez de reservas de roca fosfórica necesaria para la fabricación de fertilizantes fosfatados. La utilización de residuos orgánicos en agricultura como fuente de N y P es una buena opción de manejo que permite valorizar la gran cantidad de residuos que se generan. Sin embargo, es importante conocer los procesos que se producen en el suelo tras la aplicación de los mismos, ya que influyen en la disponibilidad de nutrientes que pueden ser utilizados por el cultivo así como en las pérdidas de nutrientes de los agrosistemas que pueden ocasionar problemas de contaminación. Aunque la dinámica del N en el suelo ha sido más estudiada que la del P, los problemas importantes de contaminación por nitratos en zonas vulnerables hacen necesaria la evaluación de aquellas prácticas de manejo que pudieran agravar esta situación, y en el caso de los residuos orgánicos, la evaluación de la respuesta agronómica y medioambiental de la aplicación de materiales con un alto contenido en N (como los residuos procedentes de la industria vinícola y alcoholera). En cuanto al P, debido a la mayor complejidad de su ciclo y de las reacciones que ocurren en el suelo, hay un mayor desconocimiento de los factores que influyen en su dinámica en los sistemas suelo-planta, lo que supone nuevas oportunidades de estudio en la evaluación del uso agrícola de los residuos orgánicos. Teniendo en cuenta los conocimientos previos sobre cada nutriente así como las necesidades específicas en el estudio de los mismos, en esta Tesis se han evaluado: (1) el efecto de la aplicación de residuos procedentes de la industria vinícola y alcoholera en la dinámica del N desde el punto de vista agronómico y medioambiental en una zona vulnerable a la contaminación por nitratos; y (2) los factores que influyen en la disponibilidad de P en el suelo tras la aplicación de residuos orgánicos. Para ello se han llevado a cabo incubaciones de laboratorio así como ensayos de campo que permitieran evaluar la dinámica de estos nutrientes en condiciones reales. Las incubaciones de suelo en condiciones controladas de humedad y temperatura para determinar el N mineralizado se utilizan habitualmente para estimar la disponibilidad de N para el cultivo así como el riesgo medioambiental. Por ello se llevó a cabo una incubación en laboratorio para conocer la velocidad de mineralización de N de un compost obtenido a partir de residuos de la industria vinícola y alcoholera, ampliamente distribuida en Castilla-La Mancha, región con problemas importantes de contaminación de acuíferos por nitratos. Se probaron tres dosis crecientes de compost correspondientes a 230, 460 y 690 kg de N total por hectárea que se mezclaron con un suelo franco arcillo arenoso de la zona. La evolución del N mineral en el suelo a lo largo del tiempo se ajustó a un modelo de regresión no lineal, obteniendo valores bajos de N potencialmente mineralizable y bajas contantes de mineralización, lo que indica que se trata de un material resistente a la mineralización y con una lenta liberación de N en el suelo, mineralizándose tan solo 1.61, 1.33 y 1.21% del N total aplicado con cada dosis creciente de compost (para un periodo de seis meses). Por otra parte, la mineralización de N tras la aplicación de este material también se evaluó en condiciones de campo, mediante la elaboración de un balance de N durante dos ciclos de cultivo (2011 y 2012) de melón bajo riego por goteo, cultivo y manejo agrícola muy característicos de la zona de estudio. Las constantes de mineralización obtenidas en el laboratorio se ajustaron a las temperaturas reales en campo para predecir el N mineralizado en campo durante el ciclo de cultivo del melón, sin embargo este modelo generalmente sobreestimaba el N mineralizado observado en campo, por la influencia de otros factores no tenidos en cuenta para obtener esta predicción, como el N acumulado en el suelo, el efecto de la planta o las fluctuaciones de temperatura y humedad. Tanto el ajuste de los datos del laboratorio al modelo de mineralización como las predicciones del mismo fueron mejores cuando se consideraba el efecto de la mezcla suelo-compost que cuando se aislaba el N mineralizado del compost, mostrando la importancia del efecto del suelo en la mineralización del N procedente de residuos orgánicos. Dado que esta zona de estudio ha sido declarada vulnerable a la contaminación por nitratos y cuenta con diferentes unidades hidrológicas protegidas, en el mismo ensayo de campo con melón bajo riego por goteo se evaluó el riesgo de contaminación por nitratos tras la aplicación de diferentes dosis de compost bajo dos regímenes de riego, riego ajustado a las necesidades del cultivo (90 ó 100% de la evapotranspiración del cultivo (ETc)) o riego excedentario (120% ETc). A lo largo del ciclo de cultivo se estimó semanalmente el drenaje mediante la realización de un balance hídrico, así como se tomaron muestras de la solución de suelo y se determinó su concentración de nitratos. Para evaluar el riesgo de contaminación de las aguas subterráneas asociado con estas prácticas, se utilizaron algunos índices medioambientales para determinar la variación en la calidad del agua potable (Índice de Impacto (II)) y en la concentración de nitratos del acuífero (Índice de Impacto Ambiental (EII)). Para combinar parámetros medioambientales con parámetros de producción, se calculó la eficiencia de manejo. Se observó que la aplicación de compost bajo un régimen de riego ajustado no aumentaba el riesgo de contaminación de las aguas subterráneas incluso con la aplicación de la dosis más alta. Sin embargo, la aplicación de grandes cantidades de compost combinada con un riego excedentario supuso un incremento en el N lixiviado a lo largo del ciclo de cultivo, mientras que no se obtuvieron mayores producciones con respecto al riego ajustado. La aplicación de residuos de la industria vinícola y alcoholera como fuente de P fue evaluada en suelos calizos caracterizados por una alta capacidad de retención de P, lo cual en algunos casos limita la disponibilidad de este nutriente. Para ello se llevó a cabo otro ensayo de incubación con dos suelos de diferente textura, con diferente contenido de carbonato cálcico, hierro y con dos niveles de P disponible; a los que se aplicaron diferentes materiales procedentes de estas industrias (con y sin compostaje previo) aportando diferentes cantidades de P. A lo largo del tiempo se analizó el P disponible del suelo (P Olsen) así como el pH y el carbono orgánico disuelto. Al final de la incubación, con el fin de estudiar los cambios producidos por los diferentes residuos en el estado del P del suelo se llevó a cabo un fraccionamiento del P inorgánico del suelo, el cual se separó en P soluble y débilmente enlazado (NaOH-NaCl-P), P soluble en reductores u ocluido en los óxidos de Fe (CBD-P) y P poco soluble precipitado como Ca-P (HCl-P); y se determinó la capacidad de retención de P así como el grado de saturación de este elemento en el suelo. En este ensayo se observó que, dada la naturaleza caliza de los suelos, la influencia de la cantidad de P aplicado con los residuos en el P disponible sólo se producía al comienzo del periodo de incubación, mientras que al final del ensayo el incremento en el P disponible del suelo se igualaba independientemente del P aplicado con cada residuo, aumentando el P retenido en la fracción menos soluble con el aumento del P aplicado. Por el contrario, la aplicación de materiales orgánicos menos estabilizados y con un menor contenido en P, produjo un aumento en las formas de P más lábiles debido a una disolución del P retenido en la fracción menos lábil, lo cual demostró la influencia de la materia orgánica en los procesos que controlan el P disponible en el suelo. La aplicación de residuos aumentó el grado de saturación de P de los suelos, sin embargo los valores obtenidos no superaron los límites establecidos que indican un riesgo de contaminación de las aguas. La influencia de la aplicación de residuos orgánicos en las formas de P inorgánico y orgánico del suelo se estudió además en un suelo ácido de textura areno francosa tras la aplicación en campo a largo plazo de estiércol vacuno y de compost obtenido a partir de biorresiduos, así como la aplicación combinada de compost y un fertilizante mineral (superfosfato tripe), en una rotación de cultivos. En muestras de suelo recogidas 14 años después del establecimiento del experimento en campo, se determinó el P soluble y disponible, la capacidad de adsorción de P, el grado de saturación de P así como diferentes actividades enzimáticas (actividad deshidrogenasa, fosfatasa ácida y fosfatasa alcalina). Las diferentes formas de P orgánico en el suelo se estudiaron mediante una técnica de adición de enzimas con diferentes substratos específicos a extractos de suelo de NaOH-EDTA, midiendo el P hidrolizado durante un periodo de incubación por colorimetría. Las enzimas utilizadas fueron la fosfatasa ácida, la nucleasa y la fitasa las cuales permitieron identificar monoésteres hidrolizables (monoester-like P), diésteres (DNA-like P) e inositol hexaquifosfato (Ins6P-like P). La aplicación a largo plazo de residuos orgánicos aumentó el P disponible del suelo proporcionalmente al P aplicado con cada tipo de fertilización, suponiendo un mayor riesgo de pérdidas de P dado el alto grado de saturación de este suelo. La aplicación de residuos orgánicos aumentó el P orgánico del suelo resistente a la hidrólisis enzimática, sin embargo no influyó en las diferentes formas de P hidrolizable por las enzimas en comparación con las observadas en el suelo sin enmendar. Además, las diferentes formas de P orgánico aplicadas con los residuos orgánicos no se correspondieron con las analizadas en el suelo lo cual demostró que éstas son el resultado de diferentes procesos en el suelo mediados por las plantas, los microorganismos u otros procesos abióticos. En este estudio se encontró una correlación entre el Ins6P-like P y la actividad microbiana (actividad deshidrogenasa) del suelo, lo cual refuerza esta afirmación. Por último, la aplicación de residuos orgánicos como fuente de N y P en la agricultura se evaluó agronómicamente en un escenario real. Se estableció un experimento de campo para evaluar el compost procedente de residuos de bodegas y alcoholeras en el mismo cultivo de melón utilizado en el estudio de la mineralización y lixiviación de N. En este experimento se estudió la aplicación de tres dosis de compost: 1, 2 y 3 kg de compost por metro lineal de plantación correspondientes a 7, 13 y 20 t de compost por hectárea respectivamente; y se estudió el efecto sobre el crecimiento de las plantas, la acumulación de N y P en la planta, así como la producción y calidad del cultivo. La aplicación del compost produjo un ligero incremento en la biomasa vegetal acompañado por una mejora significativa de la producción con respecto a las parcelas no enmendadas, obteniéndose la máxima producción con la aplicación de 2 kg de compost por metro lineal. Aunque los efectos potenciales del N y P fueron parcialmente enmascarados por otras entradas de estos nutrientes en el sistema (alta concentración de nitratos en el agua de riego y ácido fosfórico suministrado por fertirrigación), se observó una mayor acumulación de P uno de los años de estudio que resultó en un aumento en el número de frutos en las parcelas enmendadas. Además, la mayor acumulación de N y P disponible en el suelo al final del ciclo de cultivo indicó el potencial uso de estos materiales como fuente de estos nutrientes. ABSTRACT Nitrogen (N) and phosphorus (P) are essential nutrients in crop production. The development of synthetic fertilizers during the 20th century allowed an intensification of the agriculture increasing crop yields but in turn the great input of nutrients has resulted in some cases in inefficient systems with higher losses to the environment. Regarding P, the scarcity of phosphate rock reserves necessary for the production of phosphate fertilizers aggravates this problem. The use of organic wastes in agriculture as a source of N and P is a good option of management that allows to value the large amount of wastes generated. However, it is important to understand the processes occurring in the soil after application of these materials, as they affect the availability of nutrients that can be used by the crop and the nutrient losses from agricultural systems that can cause problems of contamination. Although soil N dynamic has been more studied than P, the important concern of nitrate pollution in Nitrate Vulnerable Zones requires the evaluation of those management practices that could aggravate this situation, and in the case of organic wastes, the evaluation of the agronomic and environmental response after application of materials with a high N content (such as wastes from winery and distillery industries). On the other hand, due to the complexity of soil P cycle and the reactions that occur in soil, there is less knowledge about the factors that can influence its dynamics in the soil-plant system, which means new opportunities of study regarding the evaluation of the agricultural use of organic wastes. Taking into account the previous knowledge of each nutrient and the specific needs of study, in this Thesis we have evaluated: (1) the effect of the application of wastes from the winery and distillery industries on N dynamics from the agronomic and environmental viewpoint in a vulnerable zone; and (2) the factors that influence P availability in soils after the application of organic wastes. With this purposes, incubations were carried out in laboratory conditions as well as field trials that allow to assess the dynamic of these nutrients in real conditions. Soil incubations under controlled moisture and temperature conditions to determine N mineralization are commonly used to estimate N availability for crops together with the environmental risk. Therefore, a laboratory incubation was conducted in order to determine the N mineralization rate of a compost made from wastes generated in the winery and distillery industries, widely distributed in Castilla-La Mancha, a region with significant problems of aquifers contamination by nitrates. Three increasing doses of compost corresponding to 230, 460 and 690 kg of total N per hectare were mixed with a sandy clay loam soil collected in this area. The evolution of mineral N in soil over time was adjusted to a nonlinear regression model, obtaining low values of potentially mineralizable N and low constants of mineralization, indicating that it is a material resistant to mineralization with a slow release of N, with only 1.61, 1.33 and 1.21% of total N applied being mineralized with each increasing dose of compost (for a period of six months). Furthermore, N mineralization after the application of this material was also evaluated in field conditions by carrying out a N balance during two growing seasons (2011 and 2012) of a melon crop under drip irrigation, a crop and management very characteristic of the area of study. The mineralization constants obtained in the laboratory were adjusted to the actual temperatures observed in the field to predict N mineralized during each growing season, however, this model generally overestimated the N mineralization observed in the field, because of the influence of other factors not taken into account for this prediction, as N accumulated in soil, the plant effect or the fluctuations of temperature and moisture. The fitting of the laboratory data to the model as well as the predictions of N mineralized in the field were better when considering N mineralized from the soil-compost mixture rather than when N mineralized from compost was isolated, underlining the important role of the soil on N mineralization from organic wastes. Since the area of study was declared vulnerable to nitrate pollution and is situated between different protected hydrological units, the risk of nitrate pollution after application of different doses compost was evaluated in the same field trial with melon under two irrigation regimes, irrigation adjusted to the crop needs (90 or 100% of the crop evapotranspiration (ETc)) or excedentary irrigation (120% ETc). Drainage was estimated weekly throughout the growing season by conducting a water balance, samples of the soil solution were taken and the concentration of nitrates was determined. To assess the risk of groundwater contamination associated with these practices, some environmental indices were used to determine the variation in the quality of drinking water (Impact Index (II)) and the nitrates concentration in the groundwater (Environmental Impact Index (EII)). To combine environmental parameters together with yield parameters, the Management Efficiency was calculated. It was observed that the application of compost under irrigation adjusted to the plant needs did not represent a higher risk of groundwater contamination even with the application of the highest doses. However, the application of large amounts of compost combined with an irrigation surplus represented an increase of N leaching during the growing season compared with the unamended plots, while no additional yield with respect to the adjusted irrigation strategy is obtained. The application of wastes derived from the winery and distillery industry as source of P was evaluated in calcareous soils characterized by a high P retention capacity, which in some cases limits the availability of this nutrient. Another incubation experiment was carried out using two soils with different texture, different calcium carbonate and iron contents and two levels of available P; to which different materials from these industries (with and without composting) were applied providing different amounts of P. Soil available P (Olsen P), pH and dissolved organic carbon were analyzed along time. At the end of the incubation, in order to study the changes in soil P status caused by the different residues, a fractionation of soil inorganic P was carried out, which was separated into soluble and weakly bound P (NaOH-NaCl- P), reductant soluble P or occluded in Fe oxides (CBD-P) and P precipitated as poorly soluble Ca-P (HCl-P); and the P retention capacity and degree of P saturation were determined as well. Given the calcareous nature of the soils, the influence of the amount of P applied with the organic wastes in soil available P only occurred at the beginning of the incubation period, while at the end of the trial the increase in soil available P equalled independently of the amount of P applied with each residue, increasing the P retained in the least soluble fraction when increasing P applied. Conversely, the application of less stabilized materials with a lower content of P resulted in an increase in the most labile P forms due to dissolution of P retained in the less labile fraction, demonstrating the influence of organic matter addition on soil P processes that control P availability in soil. As expected, the application of organic wastes increased the degree of P saturation in the soils, however the values obtained did not exceed the limits considered to pose a risk of water pollution. The influence of the application of organic wastes on inorganic and organic soil P forms was also studied in an acid loamy sand soil after long-term field application of cattle manure and biowaste compost and the combined application of compost and mineral fertilizer (triple superphosphate) in a crop rotation. Soil samples were collected 14 years after the establishment of the field experiment, and analyzed for soluble and available P, P sorption capacity, degree of P saturation and enzymatic activities (dehydrogenase, acid phosphatase and alkaline phosphatase). The different forms of organic P in soil were determined by using an enzyme addition technique, based on adding enzymes with different substrate specificities to NaOH-EDTA soil extracts, measuring the hydrolyzed P colorimetrically after an incubation period. The enzymes used were acid phosphatase, nuclease and phytase which allowed to identify hydrolyzable monoesters (monoester-like P) diesters (DNA-like P) and inositol hexakisphosphate (Ins6P-like P). The long-term application of organic wastes increased soil available P proportionally to the P applied with each type of fertilizer, assuming a higher risk of P losses given the high degree of P saturation of this soil. The application of organic wastes increased soil organic P resistant to enzymatic hydrolysis, but no influence was observed regarding the different forms of enzyme hydrolyzable organic P compared to those observed in the non-amended soil. Furthermore, the different forms of organic P applied with the organic wastes did not correspond to those analyzed in the soil which showed that these forms in soil are a result of multifaceted P turnover processes in soil affected by plants, microorganisms and abiotic factors. In this study, a correlation between Ins6P-like P and the microbial activity (dehydrogenase activity) of soil was found, which reinforces this claim. Finally, the application of organic wastes as a source of N and P in agriculture was evaluated agronomically in a real field scenario. A field experiment was established to evaluate the application of compost made from wine-distillery wastes in the same melon crop used in the experiments of N mineralization and leaching. In this experiment the application of three doses of compost were studied: 1 , 2 and 3 kg of compost per linear meter of plantation corresponding to 7, 13 and 20 tonnes of compost per hectare respectively; and the effect on plant growth, N and P accumulation in the plant as well as crop yield and quality was studied. The application of compost produced a slight increase in plant biomass accompanied by a significant improvement in crop yield with respect to the unamended plots, obtaining the maximum yield with the application of 2 kg of compost per linear meter. Although the potential effects of N and P were partially masked by other inputs of these nutrients in the system (high concentration of nitrates in the irrigation water and phosphoric acid supplied by fertigation), an effect of P was observed the first year of study resulting in a greater plant P accumulation and in an increase in the number of fruits in the amended plots. In addition, the higher accumulation of available N and P in the topsoil at the end of the growing season indicated the potential use of this material as source of these nutrients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil enzymes are critical to soil nutrient cycling function but knowledge on the factors that control their response to major disturbances such as wildfires remains very limited. We evaluated the effect of fire-related plant functional traits (resprouting and seeding) on the resistance and resilience to fire of two soil enzyme activities involved in phosphorus and carbon cycling (acid phosphatase and β-glucosidase) in a Mediterranean shrublands in SE Spain. Using experimental fires, we compared four types of shrubland microsites: SS (vegetation patches dominated by seeder species), RR (patches dominated by resprouter species), SR (patches co-dominated by seeder and resprouter species), and IP (shrub interpatches). We assessed pre- and post-fire activities of the target soil enzymes, available P, soil organic C, and plant cover dynamics over three years after the fire. Post-fire regeneration functional groups (resprouter, seeder) modulated both pre- and post-fire activity of acid phosphatase and β-glucosidase, with higher activity in RR and SR patches than in SS patches and IP. However, we found no major differences in enzyme resistance and resilience between microsite types, except for a trend towards less resilience in SS patches. Fire similarly reduced the activity of both enzymes. However, acid phosphatase and β-glucosidase showed contrasting post-fire dynamics. While β-glucosidase proved to be rather resilient to fire, fully recovering three years after fire, acid phosphatase showed no signs of recovery in that period. Overall, the results indicate a positive influence of resprouter species on soil enzyme activity that is very resistant to fire. Long-lasting decrease in acid phosphatase activity probably resulted from the combined effect of P availability and post-fire drought. Our results provide insights on how plant functional traits modulate soil biochemical and microbiological response to fire in Mediterranean fire-prone shrublands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increased temperature and precipitation in Arctic regions have led to deeper thawing and structural instability in permafrost soil. The resulting localized disturbances, referred to as active layer detachments (ALDs), may transport organic matter (OM) to more biogeochemically active zones. To examine this further, solid state cross polarization magic angle spinning 13C nuclear magnetic resonance (CPMAS NMR) and biomarker analysis were used to evaluate potential shifts in riverine sediment OM composition due to nearby ALDs within the Cape Bounty Arctic Watershed Observatory, Nunavut, Canada. In sedimentary OM near ALDs, NMR analysis revealed signals indicative of unaltered plant-derived material, likely derived from permafrost. Long chain acyclic aliphatic lipids, steroids, cutin, suberin and lignin occurred in the sediments, consistent with a dominance of plant-derived compounds, some of which may have originated from permafrost-derived OM released by ALDs. OM degradation proxies for sediments near ALDs revealed less alteration in acyclic aliphatic lipids, while constituents such as steroids, cutin, suberin and lignin were found at a relatively advanced stage of degradation. Phospholipid fatty acid analysis indicated that microbial activity was higher near ALDs than downstream but microbial substrate limitation was prevalent within disturbed regions. Our study suggests that, as these systems recover from disturbance, ALDs likely provide permafrost-derived OM to sedimentary environments. This source of OM, which is enriched in labile OM, may alter biogeochemical patterns and enhance microbial respiration within these ecosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Burn sepsis is a leading cause of mortality and morbidity in patients with major burns. The use of topical anti-microbial agents has helped improve the survival in these patients. There are a number of anti-microbials available, one of which, Silvazine(TM) (1% silver sulphadiazine (SSD) and 0.2% chlorhexidine digluconate), is used only in Australasia. No study, in vitro or clinical, had compared Silvazine(TM) with the new dressing Acticoat(TM). This study compared the anti-microbial activity of Silvazine(TM), Acticoa(TM) and 1% silver sulphadiazine (Flamazine(TM)) against eight common burn wound pathogens. Methods: Each organism was prepared as a suspension. A 10 mul inoculum of the chosen bacterial isolate (representing approximately between 104 and 105 total bacteria) was added to each of four vials, followed by samples of each dressing and a control. The broths were then incubated and 10 mul loops removed at specified intervals and transferred onto Horse Blood Agar. These plates were then incubated for 18 hours and a colony count was performed. Results: The data demonstrates that the combination of 1% SSD and 0.2% chlorhexidine digluconate (Silvazine(TM)) results in the most effective killing of all bacteria. SSD and Acticoat(TM) had similar efficacies against a number of isolates, but Acticoat(TM) seemed only bacteriostatic against E. faecalis and methicillin-resistant Staphylococcus aureus. Viable quantities of Enterobacter cloacae and Proteus mirabilis rei named at 24 h. Conclusion: The combination of 1% SSD and 0.2% chlorhexidine digluconate (Silvazine(TM)) is a more effective anti-microbial against a number of burn wound pathogens in this in vitro study. A clinical study of its in vivo anti-microbial efficacy is required. (C) 2003 Elsevier Ltd and ISBI. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structured soils are characterized by the presence of inter- and intra-aggregate pore systems and aggregates, which show varying chemical, physical, and biological properties depending on the aggregate type and land use system. How far these aspects also affect the ion exchange processes and to what extent the interaction between the carbon distribution and kind of organic substances affect the internal soil strength as well as hydraulic properties like wettability are still under discussion. Thus, the objective of this research was to clarify the effect of soil aggregation on physical and chemical properties of structured soils at two scales: homogenized material and single aggregates. Data obtained by sequentially peeling off soil aggregates layers revealed gradients in the chemical composition from the aggregate surface to the aggregate core. In aggregates from long term untreated forest soils we found lower amounts of carbon in the external layer, while in arable soils the differentiation was not pronounced. However, soil aggregates originating from these sites exhibited a higher concentration of microbial activity in the outer aggregate layer and declined towards the interior. Furthermore, soil depth and the vegetation type affected the wettability. Aggregate strength depended. on water suction and differences in tillage treatments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Respiratory methods to estimate the amount of C in the soil microbial biomass and the relative contributions of prokaryotes and eukaryotes in the biomass were used to evaluate the influence of pesticides on the soil microflora. Experiments were conducted with 5 and 50 micrograms per gram of three fungicides, captan, thiram and verdesan. At 5 micrograms per gram they caused significant decreases (40%) in the biomass; the organomercury fungicide verdesan also caused a shift from fungal to bacterial dominance. Within 8 days, biomass in captan- and thiram-amended soils had recovered to that of controls. Although the fungal to bacterial balance was restored in verdesan-amended soils, biomass recovery was not complete. At 50 micrograms per gram the fungicides caused long-term decreases in the biomass and altered the relative proportions of the bacterial and fungal populations. Verdesan had the greatest effect on soil microbial biomass and competition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Physical and biological properties of the water column of Florida Bay were examined at seven study sites over an eighteen month period. The results indicated seasonality in some parameters, but was not evident in others. The data displayed statistically significant (P < 0.05) differences between study sites indicating spatial variation. The presence of seagrass affected the overlying water column, especially with respect to the biological parameters: those areas overlying seagrass beds displayed statistically significantly higher values than those over sparsely covered or barren areas. During the period of the study, Florida Bay experienced a seagrass die-off event: microbial activity and numbers were statistically significantly higher over areas of dying seagrass than over healthy or dead areas. The results of this study pointed to phosphorus being the controlling, or limiting factor, for microbial activity in the water column of Florida Bay.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Treatment of agricultural biodegradable wastes and by-products can be carried out using composting or vermicomposting, or a combination of both treatment methods, to create a growing medium amendment suitable for horticultural use. When compared to traditional compost-maturation, vermicompost-maturation resulted in a more mature growing medium amendment i.e. lower C/N and pH, with increased nutrient content and improved plant growth response, increasing lettuce shoot fresh and dry weight by an average of 15% and 14%, respectively. Vermicomposted horse manure compost was used as a growing medium amendment for lettuce and was found to significantly increase lettuce shoot and root growth, and chlorophyll content. When used as a growing medium amendment for tomato fruit production, vermicomposted spent mushroom compost increased shoot growth and marketable yield, and reduced blossom end rot in two independent studies. Vermicompost addition to peat-based growing media increased marketable yield by an average of 21%. Vermicompost also improved tomato fruit quality parameters such as acidity and sweetness. Fruit sweetness, as measured using Brix value, was significantly increased in fruits grown with 10% or 20% vermicompost addition by 0.2 in truss one and 0.3 in truss two. Fruit acidity (% citric acid) was significantly increased in plants grown with vermicompost by an average of 0.65% in truss one and 0.68% in truss two. These changes in fruit chemical parameters resulted in a higher tomato fruit overall acceptability rating as determined by a consumer acceptance panel. When incorporated into soil, vermicomposted spent mushroom compost increased plant growth and reduced plant stress under conditions of cold stress, but not salinity or heat stress. The addition of 20% vermicompost to cold-stressed plants increased plant growth by an average of 30% and increased chlorophyll fluorescence by an average of 21%. Compared to peat-based growing medium, vermicompost had consistently higher nutrient content, pH, electrical conductivity and bulk density, and when added to a peat-based growing medium, vermicomposted spent mushroom compost altered the microbial community. Vermicompost amendment increased the microbial activity of the growing medium when incorporated initially, and this increased microbial activity was observed for up to four months after incorporation when plants were grown in it. Vermicomposting was shown to be a suitable treatment method for agricultural biodegradable wastes and by-products, with the resulting vermicompost having suitable physical, chemical and biological properties, and resulting in increased plant growth, marketable yield and yield quality, when used as an amendment in peat-based growing medium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a floodplain area. Though, in all aquatic systems we detected both, Type I and II MOB, in lake systems we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increased temperature and precipitation in Arctic regions have led to deeper thawing and structural instability in permafrost soil. The resulting localized disturbances, referred to as active layer detachments (ALDs), may transport organic matter (OM) to more biogeochemically active zones. To examine this further, solid state cross polarization magic angle spinning 13C nuclear magnetic resonance (CPMAS NMR) and biomarker analysis were used to evaluate potential shifts in riverine sediment OM composition due to nearby ALDs within the Cape Bounty Arctic Watershed Observatory, Nunavut, Canada. In sedimentary OM near ALDs, NMR analysis revealed signals indicative of unaltered plant-derived material, likely derived from permafrost. Long chain acyclic aliphatic lipids, steroids, cutin, suberin and lignin occurred in the sediments, consistent with a dominance of plant-derived compounds, some of which may have originated from permafrost-derived OM released by ALDs. OM degradation proxies for sediments near ALDs revealed less alteration in acyclic aliphatic lipids, while constituents such as steroids, cutin, suberin and lignin were found at a relatively advanced stage of degradation. Phospholipid fatty acid analysis indicated that microbial activity was higher near ALDs than downstream but microbial substrate limitation was prevalent within disturbed regions. Our study suggests that, as these systems recover from disturbance, ALDs likely provide permafrost-derived OM to sedimentary environments. This source of OM, which is enriched in labile OM, may alter biogeochemical patterns and enhance microbial respiration within these ecosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.