1000 resultados para soil geochemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium (K) plays an important role in many physiological and biochemical processes in plants and its adequate use is an important issue for sustainable economic crop production. Soil test-based K fertilizer recommendations are very limited for lowland rice (Oryza sativa L.) grown on Inceptisols. The objective of this study was to calibrate K soil testing for the response of lowland rice (cv. Ipagri 109) to added K. A field experiment was conducted in the farmers` field in the municipality of Lagoa da Confusao, State of Tocantins, central Brazil. The K rates used were 0, 125, 250, 375, 500, and 625 kg K ha-1 applied as broadcast and incorporated during sowing of the first rice crop. Rice responded significantly to K fertilization during 2 years of experimentation. Maximum grain yield of about 6,000 kg ha-1 was obtained with 57 mg K kg-1 soil in the first year and with 30 mg K kg-1 in the second year. This indicated that at low levels of K in the soil, nonexchangeable K was available for plant growth. Potassium use efficiency designated as agronomic efficiency (kg grain produced/kg K applied) decreased significantly in a quadratic fashion with increasing K level in the soil. Agronomic efficiency had a significantly linear association with grain yield. Hence, improving agronomic efficiency with management practices can improve rice yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relationship between occurrence of Panama disease in banana trees of cv. Nanicao and nutrients in soil and leaves The objective of the present work was to verify if the incited symptoms in banana trees cv. Nanicao, belonging to the subgroup Cavendish, in Vale do Ribeira, are related to levels of nutrients in soil and leaves. Sixteen areas in Vale do Ribeira were selected, one half with symptomatic plants and the other with healthy plants. In those areas the third leaf of five plants and the soil near those plants were collected, at depths from 0 to 20 cm and from 20 to 40 cm. At both depths of the sampled soil, levels of Ca, Mg, PO(4)(-3), S and cationic exchange capacity (CEC) were significantly different among the areas, and the low values of these elements were present in the areas containing symptomatic plants. At both depths, Mg, Al and H in relation to CEC were significantly different among the areas, and the low values of Mg and high of Al and H were present in the areas with symptomatic plants. The N, K and S in the leaves were significantly different among the areas. These elements showed low values in the areas containing symptomatic plants. Despite the fact that some amounts of macronutrients of the soil and of the leaves are present only in the areas containing plants of Nanicao with symptoms similar to fusariosis, proof of a possible occurrence of race of the pathogen should be looked for in Vale do Ribeira.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the Ca:Mg ratio in amendments used to neutralize soil acidity is one way of altering the availability of those nutrients to the plants in acid soils. The objective of the work was to evaluate the effect of different proportions of calcium and magnesium in the form of CaCO(3) and MgCO(3) Oil the nutrient uptake, and initial production of dry matter by corn plants. The study was carried out in greenhouse conditions, in Lages, SC, with a completely randomized experimental design, with three replications. The treatments were the application of equivalent to 21.0 t ha(-1) of lime, using mixtures of CaCO(3) and MgCO(3) in several proportions to obtain different Ca:Mg ratios (1: 1, 2:1, 4:1, 8:1, 16:1 and 32:1), on a Humic Alic Cambisol, with 310 g kg(-1) of clay. The application of treatments caused the following Ca:Mg ratios in the CEC: 1. 1: 1, 2.1:1, 4.0:1, 8.1:1, 16.4:1 and 31.8:1. The high concentrations of exchangeable Ca in soil caused by addition of lime with high Ca content inhibited the uptake of Mg and K by the corn plants. The increase in the soil Ca:Mg ratio reduced the dry matter production and height of plants in the initial stage of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineralogical, hydrochemical and S isotope data were used to constrain hydrogeochemical processes that produce acid mine drainage from sulfidic waste at the historic Mount Morgan Au–Cu mine, and the factors controlling the concentration of SO4 and environmentally hazardous metals in the nearby Dee River in Queensland, Australia. Some highly contaminated acid waters, with metal contents up to hundreds of orders of magnitude greater than the Australia–New Zealand environmental standards, by-pass the water management system at the site and drain into the adjacent Dee River. Mine drainage precipitates at Mt. Morgan were classified into 4 major groups and were identified as hydrous sulfates and hydroxides of Fe and Al with various contents of other metals. These minerals contain adsorbed or mineralogically bound metals that are released into the water system after rainfall events. Sulfate in open pit water and collection sumps generally has a narrow range of S isotope compositions (δ34S = 1.8–3.7‰) that is comparable to the orebody sulfides and makes S isotopes useful for tracing SO4 back to its source. The higher δ34S values for No. 2 Mill Diesel sump may be attributed to a difference in the source. Dissolved SO4 in the river above the mine influence and 20 km downstream show distinctive heavier isotope compositions (δ34S = 5.4–6.8‰). The Dee River downstream of the mine is enriched in 34S (δ34S = 2.8–5.4‰) compared with mine drainage possibly as a result of bacterial SO4 reduction in the weir pools, and in the water bodies within the river channel. The SO4 and metals attenuate downstream by a combination of dilution with the receiving waters, SO4 reduction, and the precipitation of Fe and Al sulfates and hydroxides. It is suggested here that in subtropical Queensland, with distinct wet and dry seasons, temporary reducing environments in the river play an important role in S isotope systematics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of 'balanced' Ca, Mg, and K ratios, as prescribed by the basic cation saturation ratio (BCSR) concept, is still used by some private soil-testing laboratories for the interpretation of soil analytical data. This review aims to examine the suitability of the BCSR concept as a method for the interpretation of soil analytical data. According to the BCSR concept, maximum plant growth will be achieved only when the soil’s exchangeable Ca, Mg, and K concentrations are approximately 65 % Ca, 10 % Mg, and 5 % K (termed the ‘ideal soil’). This ‘ideal soil’ was originally proposed by Firman Bear and co-workers in New Jersey (USA) during the 1940s as a method of reducing luxury K uptake by alfalfa (Medicago sativa L.). At about the same time, William Albrecht, working in Missouri (USA), concluded through his own investigations that plants require a soil with a high Ca saturation for optimal growth. Whilst it now appears that several of Albrecht’s experiments were fundamentally flawed, the BCSR (‘balanced soil’) concept has been widely promoted, suggesting that the prescribed cationic ratios provide optimum chemical, physical, and biological soil properties. Our examination of data from numerous studies (particularly those of Albrecht and Bear, themselves) would suggest that, within the ranges commonly found in soils, the chemical, physical, and biological fertility of a soil is generally not influenced by the ratios of Ca, Mg, and K. The data do not support the claims of the BCSR, and continued promotion of the BCSR will result in the inefficient use of resources in agriculture and horticulture.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book provides a way for farmers in developing countries to benefit from scientific knowledge on plant nutrition and soil fertility. Specifically, it will help farmers recognise and deal with shortages or excesses of chemical elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetrically-determined carbon dioxide reactivities of chars formed from New Zealand coals, ranging in rank from lignite to high volatile bituminous, vary from 0.12 to 10.63 mg/h/mg on a dry, ash-free basis. The lowest rank subbituminous coal chars have similar reactivities to the lignite coal chars. Calcium content of the char shows the strongest correlation with reactivity, which increases as the calcium content increases. High calcium per se does not directly imply a high char reactivity. Organically-bound calcium catalyses the conversion of carbon to carbon monoxide in the presence of carbon dioxide, whereas calcium present as discrete minerals in the coal matrix, e.g., calcite, fails to significantly affect reactivity. Catalytic effects of magnesium, iron, sodium and phosphorous are not as obvious, but can be recognised for individual chars. The thermogravimetric technique provides a fast, reliable analysis that is able to distinguish char reactivity differences between coals, which may be due to any of the above effects. Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk density of undisturbed soil samples can be measured using computed tomography (CT) techniques with a spatial resolution of about 1 mm. However, this technique may not be readily accessible. On the other hand, x-ray radiographs have only been considered as qualitative images to describe morphological features. A calibration procedure was set up to generate two-dimensional, high-resolution bulk density images from x-ray radiographs made with a conventional x-ray diffraction apparatus. Test bricks were made to assess the accuracy of the method. Slices of impregnated soil samples were made using hardsetting seedbeds that had been gamma scanned at 5-mm depth increments in a previous study. The calibration procedure involved three stages: (i) calibration of the image grey levels in terms of glass thickness using a staircase made from glass cover slips, (ii) measurement of ratio between the soil and resin mass attenuation coefficients and the glass mass attenuation coefficient, using compacted bricks of known thickness and bulk density, and (iii) image correction accounting for the heterogeneity of the irradiation field. The procedure was simple, rapid, and the equipment was easily accessible. The accuracy of the bulk density determination was good (mean relative error 0.015), The bulk density images showed a good spatial resolution, so that many structural details could be observed. The depth functions were consistent with both the global shrinkage and the gamma probe data previously obtained. The suggested method would be easily applied to the new fuzzy set approach of soil structure, which requires generation of bulk density images. Also, it would be an invaluable tool for studies requiring high-resolution bulk density measurement, such as studies on soil surface crusts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multisegment percolation system (MSPS) consisting of 25 individual collection wells was constructed to study the effects of localised soil heterogeneities on the transport of solutes in the vadose zone. In particular, this paper discusses the transport of water and nutrients (NO3-, Cl-, PO43-) through structurally stable, free-draining agricultural soil from Victoria, Australia. A solution of nutrients was irrigated onto the surface of a large undisturbed soil core over a 12-h period. This was followed by a continuous irrigation of distilled water at a fate which did not cause pending for a further 18 days. During this time, the volume of leachate and the concentration of nutrients in the leachate of each well were measured. Very significant variation in drainage patterns across a small spatial scale was observed. Leaching of nitrate-nitrogen and chloride from the core occurred two days after initial application. However, less than 1% of the total applied phosphate-phosphorus leached from the soil during the 18-day experiment, indicating strong adsorption. Our experiments indicate considerable heterogeneity in water flow patterns and solute leaching on a small spatial scale. These results have significant ramifications for modelling solute transport and predicting nutrient loadings on a larger scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under certain soil conditions, e.g. hardsetting clay B-horizons of South-Eastern Australia, wheat plants do not perform as well as would be expected given measurements of bulk soil attributes. In such soils, measurement indicates that a large proportion (80%) of roots are preferentially located in the soil within 1 mm of macropores. This paper addresses the question of whether there are biological and soil chemical effects concomitant with this observed spatial relationship. The properties of soil manually dissected from the 1-3 mm wide region surrounding macropores, the macropore sheath, were compared to those that are measured in a conventional manner on the bulk soil. Field specimens of two different soil materials were dissected to examine biological differentiation. To ascertain whether the macropore sheath soil differs from rhizosphere soil, wheat was grown in structured and repacked cores under laboratory conditions. The macropore sheath soil contained more microbial biomass per unit mass than both the bulk soil and the rhizosphere. The bacterial population in the macropore sheath was able to utilise a wider range of carbon substrates and to a greater extent than the bacterial population in the corresponding bulk soil. These differences between the macropore sheath and bulk soil were almost non-existent in the repacked cores. Evidence for larger numbers of propagules of the broad host range fungus Pythium in the macropore sheath soil were also obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants require roots to supply water, nutrients and oxygen for growth. The spatial distribution of roots in relation to the macropore structure of the soil in which they are growing influences how effective they are at accessing these resources. A method for quantifying root-macropore associations from horizontal soil sections is illustrated using two black vertisols from the Darling Downs, Queensland, Australia. Two-dimensional digital images were obtained of the macropore structure and root distribution for an area 55 x 55 mm at a resolution of 64 mu m. The spatial distribution of roots was quantified over a range of distances using the K-function. In all specimens, roots were shown to be clustered at short distances (1-10 mm) becoming more random at longer distances. Root location in relation to macropores was estimated using the function describing the distance of each root to the nearest macropore. From this function, a summary variable, termed the macropore sheath, was defined. The macropore sheath is the distance from macropores within which 80% of roots are located. Measured root locations were compared to random simulations of root distribution to establish if there was a preferential association between roots and macropores. More roots were found in and around macropores than expected at random.