996 resultados para soil bacteria


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new laboratory method was proposed to establish an easily performed standard for the determination of mobile soil water close to real conditions during the infiltration and redistribution of water in a soil. It consisted of applying a water volume with a tracer ion on top of an undisturbed ring sample on a pressure plate under a known suction or pressure head. Afterwards, soil water mobility was determined by analyzing the tracer-ion concentration in the soil sample. Soil water mobility showed to be a function of the applied water volume. No relation between soil water mobility and applied pressure head could be established with data from the present experiment. A simple one- or two-parameter equation can be fitted to the experimental data to parameterize soil water mobility as a function of applied solute volume. Sandy soils showed higher mobility than loamy soils at low values of applied solute volumes, and both sandy and loamy soils showed an almost complete mobility at high applied solute volumes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rhizosphere constitutes a complex niche that may be exploited by a wide variety of bacteria. Bacterium-plant interactions in this niche can be influenced by factors such as the expression of heterologous genes in the plant. The objective of this work was to describe the bacterial communities associated with the rhizosphere and rhizoplane regions of tobacco plants, and to compare communities from transgenic tobacco lines (CAB1, CAB2 and TRP) with those found in wild-type (WT) plants. Samples were collected at two stages of plant development, the vegetative and flowering stages (1 and 3 months after germination). The diversity of the culturable microbial community was assessed by isolation and further characterization of isolates by amplified ribosomal RNA gene restriction analysis (ARDRA) and 16S rRNA sequencing. These analyses revealed the presence of fairly common rhizosphere organisms with the main groups Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacilli. Analysis of the total bacterial communities using PCR-DGGE (denaturing gradient gel electrophoresis) revealed that shifts in bacterial communities occurred during early plant development, but the reestablishment of original community structure was observed over time. The effects were smaller in rhizosphere than in rhizoplane samples, where selection of specific bacterial groups by the different plant lines was demonstrated. Clustering patterns and principal components analysis (PCA) were used to distinguish the plant lines according to the fingerprint of their associated bacterial communities. Bands differentially detected in plant lines were found to be affiliated with the genera Pantoea, Bacillus and Burkholderia in WT, CAB and TRP plants, respectively. The data revealed that, although rhizosphere/rhizoplane microbial communities can be affected by the cultivation of transgenic plants, soil resilience may be able to restore the original bacterial diversity after one cycle of plant cultivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The minerals of the clay fraction in estuarine plains are mainly detrital being a mixture of marine and continental sediments, but can also be authigenic. Because of the importance of mangrove ecosystems in tropical estuarine areas and the relatively few existing studies of the mineralogical composition of soils in these environments, the aim of this study was to determine the mineralogical assemblage and identify potential contrasts along the coast of the State of Sao Paulo. Soils from I I mangroves distributed along the coastal plain of the State of Sao Paulo were sampled at depths of 0 to 20 and 60 to 80 cm, and samples of suspended sediments from the Ribeira do Iguape River were collected for analysis. Mineralogical analyses were performed on the clay and silt fractions by x-ray diffraction (XRD) and transmission electron microscopy, and fresh soil samples were analyzed by scanning electron microscopy-energy dispersive spectrometry and suspended sediments by XRD. The silt fraction contained quartz, feldspars, gibbsite, kaolinite, illite, and vermiculite, and the clay fraction contained smectite, kaolinite, illite, gibbsite, quartz, and feldspars. Locally, vermiculite, biotite, anatase, halloysite, and goethite may occur because of recent transport of sediments to the system. Pyrite was identified in fresh samples. The allochthonous minerals found either were terrestrial and transported by rivers or had originated from the continental platform by past transgressive events. We suggest that the neoformation of smectite and kaolinite occurs in mangrove soils. Different geomorphological settings along the Sao Paulo coast appear to regulate mineral distribution in mangrove soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil CO(2) emissions are highly variable, both spatially and across time, with significant changes even during a one-day period. The objective of this study was to compare predictions of the diurnal soil CO(2) emissions in an agricultural field when estimated by ordinary kriging and sequential Gaussian simulation. The dataset consisted of 64 measurements taken in the morning and in the afternoon on bare soil in southern Brazil. The mean soil CO(2) emissions were significantly different between the morning (4.54 mu mol m(-2) s(-1)) and afternoon (6.24 mu mol m(-2) s(-1)) measurements. However, the spatial variability structures were similar, as the models were spherical and had close range values of 40.1 and 40.0 m for the morning and afternoon semivariograms. In both periods, the sequential Gaussian simulation maps were more efficient for the estimations of emission than ordinary kriging. We believe that sequential Gaussian simulation can improve estimations of soil CO(2) emissions in the field, as this property is usually highly non-Gaussian distributed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly weathered soils represent about 3 billion ha of the tropical region. Oxisols represent about 60% of the Brazilian territory (more than 5 million km 2), in areas of great agricultural importance. Soil organic carbon (SOC) can be responsible for more than 80% of the cation exchange capacity (CEC) of highly weathered soils, such as Oxisols and Ultisols. The objective of this study was to estimate the contribution of the SOC to the CEC of Brazilian soils from different orders. Surface samples (0.0 to 0.2 m) of 30 uncultivated soils (13 Oxisols, 6 Ultisols, 5 Alfisols, 3 Entisols, I Histosol, 1 Inceptisol. and I Molisol), under native forests and from reforestation sites from Sao Paulo State, Brazil, were collected in order to obtain a large variation of (electro)chemical, physical, and mineralogical soil attributes. Total content of SOC was quantified by titulometric and colorimetric methods. Effective cation exchange capacity (ECEC) was obtained by two methods: the indirect method-summation-estimated the ECECi from the sum of basic cations (Ca+ Mg+ K+ Na) and exchangeable Al; and the direct ECECd obtained by the compulsive exchange method, using unbuffered BaCl2 solution. The contribution of SOC to the soil CEC was estimated by the Bennema statistical method. The amount of SOC var ied from 6.6 g kg(-1) to 213.4 g kg(-1). while clay contents varied from 40 g kg(-1) to 716 g kg(-1). Soil organic carbon contents were strongly associated to the clay contents, suggesting that clay content was the primary variable in controling the variability of SOC contents in the samples. Cation exchange capacity varied from 7.0 mmol(c) kg(-1) to 137.8 mmol(c) kg(-1) and had a positive Correlation with SOC. The mean contribution (per grain) of the SOC (1.64 mmol(c)) for the soil CEC was more than 44 times higher than the contribution of the clay fraction (0.04 mmol(c),). A regression model that considered the SOC content as the only significant variable explained 60% of the variation in the soil total CEC. The importance of SOC was related to soil pedogenetic process, since its contribution to the soil CEC was more evident in Oxisols with predominance of Fe and Al (oxihydr)oxides in the mineral fraction or in Ultisols, that presented illuviated clay. The influence of SOC in the sign and in the magnitude of the net charge of soils reinforce the importance of agricultural management systems that preserve high levels of SOC, in order to improve their sustainability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterial diversity present in sediments of a well-preserved mangrove in Ilha do Cardoso, located in the extreme south of So Paulo State coastline, Brazil, was assessed using culture-independent molecular approaches (denaturing gradient gel electrophoresis (DGGE) and analysis of 166 sequences from a clone library). The data revealed a bacterial community dominated by Alphaproteobacteria (40.36% of clones), Gammaproteobacteria (19.28% of clones) and Acidobacteria (27.71% of clones), while minor components of the assemblage were affiliated to Betaproteobacteria, Deltaproteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The clustering and redundancy analysis (RDA) based on DGGE were used to determine factors that modulate the diversity of bacterial communities in mangroves, such as depth, seasonal fluctuations, and locations over a transect area from the sea to the land. Profiles of specific DGGE gels showed that both dominant (`universal` Bacteria and Alphaproteobacteria) and low-density bacterial communities (Betaproteobacteria and Actinobacteria) are responsive to shifts in environmental factors. The location within the mangrove was determinant for all fractions of the community studied, whereas season was significant for Bacteria, Alphaproteobacteria, and Betaproteobacteria and sample depth determined the diversity of Alphaproteobacteria and Actinobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frozen samples of mechanically deboned chicken meat (MDCM) with skin were irradiated with gamma radiation doses of 0.0 kGy (control) and 3 kGy at 2 different radiation dose rates: 0.32 kGy/h (3 kGy) and 4.04 kGy/h (3 kGy). Batches of irradiated and control samples were evaluated during 11 d of refrigerated (2 +/- 1 degrees C) storage for the following parameters: total psychrotrophic bacteria count, thiobarbituric acid reactive substances (TBARS), evaluation of objective color (L*, a*, and b*) and a sensory evaluation (irradiated odor, oxidized odor, pink and brown colors). No statistical difference (P > 0.05) was found amongst the TBARS values obtained for the MDCM samples irradiated with dose rates of 0.32 and 4.04 kGy/h. There was a significant increase (P < 0.05) in the psychrotrophic bacterial count as from the 7th day of refrigerated storage, for the MDCM samples irradiated at the dose rate of 4.04 kGy/h. With respect to the attribute of oxidized odor, the samples irradiated with a dose rate of 0.32 kGy/h showed a stronger intensity and were significantly different (P < 0.05) from the sample irradiated with a dose rate of 4.04 kGy/h on days 0 and 2 of refrigerated storage. Irradiation with a dose rate of 4.04 kGy/h (3 kGy) was shown to be the best condition for the processing of MDCM according to the evaluation of all the variables, under the conditions of this study. Practical Application The results obtained for the application of different dose rates of ionizing radiation to mechanically deboned chicken meat will provide the food industry with information concerning the definition of the best processing conditions to maximize the sensory and food quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Among environmental factors governing innumerous processes that are active in estuarine environments, those of edaphic character have received special attention in recent studies. With the objectives of determining the spatial patterns of soil attributes and components across different mangrove forest landscapes and obtaining additional information on the cause-effect relationships between these variables and position within the estuary, we analyzed several soil attributes in 31 mangrove soil profiles from the state of So Paulo (Guaruja, Brazil). Materials and methods Soil samples were collected at low tide along two transects within the CrumahA(0) mangrove forest. Samples were analyzed to determine pH, Eh, salinity, and the percentages of sand, silt, clay, total organic carbon (TOC), and total S. Mineralogy of the clay fraction (< 2 mm) was also studied by X-ray diffraction analysis, and partitioning of solid-phase Fe was performed by sequential extraction. Results and discussion The results obtained indicate important differences in soil composition at different depths and landscape positions, causing variations in physicochemical parameters, clay mineralogy, TOC contents, and iron geochemistry. The results also indicate that physicochemical conditions may vary in terms of different local microtopographies. Soil salinity was determined by relative position in relation to flood tide and transition areas with highlands. The proportions of TOC and total S are conditioned by the sedimentation of organic matter derived from vegetation and by the prevailing redox conditions, which clearly favored intense sulfate reduction in the soils (similar to 80% of the total Fe is Fe-pyrite). Particle-size distribution is conditioned by erosive/deposition processes (present and past) and probably by the positioning of ancient and reworked sandy ridges. The existing physicochemical conditions appear to contribute to the synthesis (smectite) and transformation (kaolinite) of clay minerals. Conclusions The results demonstrate that the position of soils in the estuary greatly affects soil attributes. Differences occur even at small scales (meters), indicating that both edaphic (soil classification, soil mineralogy, and soil genesis) and environmental (contamination and carbon stock) studies should take such variability into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid waste of the automobile industry containing large amounts of heavy metals might affect the emission of greenhouse gases (GHG) when applied to the soil. Accumulation of inorganic chemical elements in the environment generally occurs due to human activity (industry, agriculture, mining and waste landfills). Residues from human activities may release heavy metals to the soil solution, causing toxicity to plants and other soil organisms. Heavy metals may also be adsorbed to clay minerals and/or complexed by the soil organic matter, becoming a potential source of pollutants. Not much is known about the behavior of solid wastes in tropical soil as regarded as source of greenhouse gases (GHG). The emission of GHG (CO(2), CH(4) and N(2)O) was evaluated in incubated soil samples collected in an area contaminated with a solid residue from an automobile industry. Samples were randomly collected at 0 to 0.2 m (a mix of soil and residue), 0.2 to 0.4 m (only residue) and 0.4 to 0.6 m (only soil). A contiguous uncontaminated area, cultivated with sugarcane, was also sampled following the same protocol. Canonical Discriminant Analysis and Principal Component Analysis were applied to the data to evaluate the GHG emission rates. Emission rates of GHG were greater in the samples from the contaminated than the sugarcane area, particularly high during the first days of incubation. CO(2) emissions were greater in samples collected at the upper layer for both areas, while CH(4) and N(2)O emissions were similar in all samples. The emission rates of CH(4) were the most efficient variables to differentiate contaminated and uncontaminated areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urea and ammonium sulfate are principal nitrogen (N) sources for crop production. Two field experiments were conducted during three consecutive years to evaluate influence of urea and ammonium sulfate application on grain yield, soil pH, calcium (Ca) saturation, magnesium (Mg) saturation, base saturation, aluminum (Al) saturation, and acidity (H + Al) saturation in lowland rice production. Grain yield was significantly influenced by urea as well as ammonium sulfate fertilization. Soil pH linearly decreased with the application of N by ammonium sulfate and urea fertilizers. However, the magnitude of the pH decrease was greater by ammonium sulfate than by urea. The Ca and Mg saturations were decreased at the greater N rates compared to low rates of N by both the fertilizer sources. The Al and acidity saturation increased with increasing N rates by both the fertilizer sources. However, these acidity indices were increased more with the application of ammonium sulfate compared with urea. Rice grain yield had negative associations with pH, Ca saturation, Mg saturation, and base saturation and positive associations with Al and acidity saturation. This indicates that rice plant is tolerant to soil acidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium (K) plays an important role in many physiological and biochemical processes in plants and its adequate use is an important issue for sustainable economic crop production. Soil test-based K fertilizer recommendations are very limited for lowland rice (Oryza sativa L.) grown on Inceptisols. The objective of this study was to calibrate K soil testing for the response of lowland rice (cv. Ipagri 109) to added K. A field experiment was conducted in the farmers` field in the municipality of Lagoa da Confusao, State of Tocantins, central Brazil. The K rates used were 0, 125, 250, 375, 500, and 625 kg K ha-1 applied as broadcast and incorporated during sowing of the first rice crop. Rice responded significantly to K fertilization during 2 years of experimentation. Maximum grain yield of about 6,000 kg ha-1 was obtained with 57 mg K kg-1 soil in the first year and with 30 mg K kg-1 in the second year. This indicated that at low levels of K in the soil, nonexchangeable K was available for plant growth. Potassium use efficiency designated as agronomic efficiency (kg grain produced/kg K applied) decreased significantly in a quadratic fashion with increasing K level in the soil. Agronomic efficiency had a significantly linear association with grain yield. Hence, improving agronomic efficiency with management practices can improve rice yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relationship between occurrence of Panama disease in banana trees of cv. Nanicao and nutrients in soil and leaves The objective of the present work was to verify if the incited symptoms in banana trees cv. Nanicao, belonging to the subgroup Cavendish, in Vale do Ribeira, are related to levels of nutrients in soil and leaves. Sixteen areas in Vale do Ribeira were selected, one half with symptomatic plants and the other with healthy plants. In those areas the third leaf of five plants and the soil near those plants were collected, at depths from 0 to 20 cm and from 20 to 40 cm. At both depths of the sampled soil, levels of Ca, Mg, PO(4)(-3), S and cationic exchange capacity (CEC) were significantly different among the areas, and the low values of these elements were present in the areas containing symptomatic plants. At both depths, Mg, Al and H in relation to CEC were significantly different among the areas, and the low values of Mg and high of Al and H were present in the areas with symptomatic plants. The N, K and S in the leaves were significantly different among the areas. These elements showed low values in the areas containing symptomatic plants. Despite the fact that some amounts of macronutrients of the soil and of the leaves are present only in the areas containing plants of Nanicao with symptoms similar to fusariosis, proof of a possible occurrence of race of the pathogen should be looked for in Vale do Ribeira.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity and beneficial characteristics of endophytic microorganisms have been studied in several host plants. However, information regal-ding naturally, occurring seed-associated endophytes and vertical transmission among different life-history stages of hosts is limited. Endophytic bacteria were isolated from seeds and seedlings of 10 Eucalyptus species and two hybrids. The results showed that endophytic bacteria, Such as Bacillus, Enterococcus, Paenibacillus and Methylobacterium, are vertically transferred from seeds to seedlings. In addition, the endophytic bacterium Pantoea agglomerans was tagged with the gfp gene, inoculated into seeds and further reisolated from seedlings. These results suggested it novel approach to change the profile of the plants, where the bacterium is a delivery vehicle for desired traits. This is the first report of an endophytic bacterial community residing in Eucalyptus seeds and the transmission of these bacteria from seeds to seedlings. The bacterial species reported ill this work have been described as providing benefits to host plants. Therefore, we Suggest that endophytic bacteria can be transmitted vertically from seeds to seedlings, assuring the support of the bacterial community in the host plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the Ca:Mg ratio in amendments used to neutralize soil acidity is one way of altering the availability of those nutrients to the plants in acid soils. The objective of the work was to evaluate the effect of different proportions of calcium and magnesium in the form of CaCO(3) and MgCO(3) Oil the nutrient uptake, and initial production of dry matter by corn plants. The study was carried out in greenhouse conditions, in Lages, SC, with a completely randomized experimental design, with three replications. The treatments were the application of equivalent to 21.0 t ha(-1) of lime, using mixtures of CaCO(3) and MgCO(3) in several proportions to obtain different Ca:Mg ratios (1: 1, 2:1, 4:1, 8:1, 16:1 and 32:1), on a Humic Alic Cambisol, with 310 g kg(-1) of clay. The application of treatments caused the following Ca:Mg ratios in the CEC: 1. 1: 1, 2.1:1, 4.0:1, 8.1:1, 16.4:1 and 31.8:1. The high concentrations of exchangeable Ca in soil caused by addition of lime with high Ca content inhibited the uptake of Mg and K by the corn plants. The increase in the soil Ca:Mg ratio reduced the dry matter production and height of plants in the initial stage of development.