807 resultados para smart power grid
Resumo:
Over the last decade there has been a rapid global increase in wind power stimulated by energy and climate policies. However, as wind power is inherently variable and stochastic over a range of time scales, additional system balancing is required to ensure system reliability and stability. This paper reviews the technical, policy and market challenges to achieving ambitious wind power penetration targets in Ireland’s All-Island Grid and examines a number of measures proposed to address these challenges. Current government policy in Ireland is to address these challenges with additional grid reinforcement, interconnection and open-cycle gas plant. More recently smart grid combined with demand side management and electric vehicles have also been presented as options to mitigate the variability of wind power. In addition, the transmission system operators have developed wind farm specific grid codes requiring improved turbine controls and wind power forecasting techniques.
Resumo:
Environmental concerns and fossil fuel shortage put pressure on both power and transportation systems. Electric vehicles (EVs) are thought to be a good solution to these problems. With EV adoption, energy flow is two way: from grid to vehicle and from vehicle to grid, which is known as vehicle-to-grid (V2G) today. This paper considers electric power systems and provides a review of the impact of V2G on power system stability. The concept and basics of V2G technology are introduced at first, followed by a description of EV application in the world. Several technical issues are detailed in V2G modeling and capacity forecasting, steady-state analysis and stability analysis. Research trends of such topics are declared at last.
Resumo:
Optimal fault ride-through (FRT) conditions for a doubly-fed induction generator (DFIG) during a transient grid fault are analyzed with special emphasis on improving the active power generation profile. The transition states due to crowbar activation during transient faults are investigated to exploit the maximum power during the fault and post-fault period. It has been identified that operating slip, severity of fault and crowbar resistance have a direct impact on the power capability of a DFIG, and crowbar resistance can be chosen to optimize the power capability. It has been further shown that an extended crowbar period can deliver enhanced inertial response following the transient fault. The converter protection and drive train dynamics have also been analyzed while choosing the optimum crowbar resistance and delivering enhanced inertial support for an extended crowbar period.
Resumo:
This study characterizes the domestic loads suitable to participate in the load participation scheme to make the power system more carbon and economically efficient by shifting the electricity demand profile towards periods when there is plentiful renewable in-feed.
A series of experiments have been performed on a common fridge-freezer, both completely empty and half full. The results presented are ambient temperature, temperature inside the fridge, temperature inside the drawer of the fridge, temperature inside the freezer, thermal time constants, power consumption and electric energy consumed.
The thermal time constants obtained clearly demonstrate the potential of such refrigeration load for Smart Customer Load Participation.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.
Resumo:
The future European power system will have a hierarchical structure created by layers of system control from a Supergrid via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the context of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called 'back-up generation' needed to support an 80% renewable energy portfolio in Europe by 2050. © 2013 IEEE.
Resumo:
The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.
Resumo:
The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.
Resumo:
With the increasing utilization of electric vehicles (EVs), transportation systems and electrical power systems are becoming increasingly coupled. However, the interaction between these two kinds of systems are not well captured, especially from the perspective of transportation systems. This paper studies the reliability of integrated transportation and electrical power system (ITES). A bidirectional EV charging control strategy is first demonstrated to model the interaction between the two systems. Thereafter, a simplified transportation system model is developed, whose high efficiency makes the reliability assessment of the ITES realizable with an acceptable accuracy. Novel transportation system reliability indices are then defined from the view point of EV’s driver. Based on the charging control model and the transportation simulation method, a daily periodic quasi sequential reliability assessment method is proposed for the ITES system. Case studies based on RBTS system demonstrate that bidirectional charging controls of EVs will benefit the reliability of power systems, while decrease the reliability of EVs travelling. Also, the optimal control strategy can be obtained based on the proposed method. Finally, case studies are performed based on a large scale test system to verify the practicability of the proposed method.
Resumo:
This paper presents a framework for a telecommunications interface which allows data from sensors embedded in Smart Grid applications to reliably archive data in an appropriate time-series database. The challenge in doing so is two-fold, firstly the various formats in which sensor data is represented, secondly the problems of telecoms reliability. A prototype of the authors' framework is detailed which showcases the main features of the framework in a case study featuring Phasor Measurement Units (PMU) as the application. Useful analysis of PMU data is achieved whenever data from multiple locations can be compared on a common time axis. The prototype developed highlights its reliability, extensibility and adoptability; features which are largely deferred from industry standards for data representation to proprietary database solutions. The open source framework presented provides link reliability for any type of Smart Grid sensor and is interoperable with existing proprietary database systems, and open database systems. The features of the authors' framework allow for researchers and developers to focus on the core of their real-time or historical analysis applications, rather than having to spend time interfacing with complex protocols.
Resumo:
The need for fast response demand side participation (DSP) has never been greater due to increased wind power penetration. White domestic goods suppliers are currently developing a `smart' chip for a range of domestic appliances (e.g. refrigeration units, tumble dryers and storage heaters) to support the home as a DSP unit in future power systems. This paper presents an aggregated population-based model of a single compressor fridge-freezer. Two scenarios (i.e. energy efficiency class and size) for valley filling and peak shaving are examined to quantify and value DSP savings in 2020. The analysis shows potential peak reductions of 40 MW to 55 MW are achievable in the Single wholesale Electricity Market of Ireland (i.e. the test system), and valley demand increases of up to 30 MW. The study also shows the importance of the control strategy start time and the staggering of the devices to obtain the desired filling or shaving effect.
Resumo:
The results in this paper are based on a data set containing system demand, wind generation and CO2 emission between Jan 2010 and Sep 2013. The data was recorded at 15 minute intervals and reflects the macroscopic operation of the Republic of Ireland's electrical grid. The data was analyzed by investigating how daily wind generation effected daily CO2 emission across multiple days with equivalent daily demand. A figure for wind turbine efficiency was determined by dividing the CO2 mitigation potential of wind power by the CO2 intensity of the grid; both in units of Tonnes of CO2 per MWh. The yearly wind power efficiency appears to have increased by 5.6% per year, now standing around 90%. Over the four years significant regularity was observed in the profiles of wind turbine efficiency against daily demand. It appears that the efficiency profile has moved in recent years so that maximum efficiency coincides with most frequent demand.
Resumo:
With the development and deployment of IEC 61850 based smart substations, cybersecurity vulnerabilities of supervisory control and data acquisition (SCADA) systems are increasingly emerging. In response to the emergence of cybersecurity vulnerabilities in smart substations, a test-bed is indispensable to enable cybersecurity experimentation. In this paper, a comprehensive and realistic cyber-physical test-bed has been built to investigate potential cybersecurity vulnerabilities and the impact of cyber-attacks on IEC 61850 based smart substations. This test-bed is close to a real production type environment, and has the ability to carry out end-to-end testing of cyber-attacks and physical consequences. A fuzz testing approach is proposed for detecting IEC 61850 based intelligent electronic devices (IEDs) and validated in the proposed test-bed.
Resumo:
This paper describes a smart grid test bed comprising embedded generation, phasor measurement units (PMUs), and supporting ICT components and infrastructure. The test bed enables the development of a use case focused on a synchronous islanding scenario, where the embedded generation becomes islanded from the mains supply. Due to the provisioned control components, control strategy, and best-practice ICT support infrastructure, the islanded portion of the grid is able to continue to operate in a secure and dependable manner.