944 resultados para sine fatigue (cyclic loading)
Resumo:
A study of carbon fiber reinforced epoxy composite material with 0° ply or ±45°ply(unnotched or with edge notch) was carried out under static tensile and tension-tensioncyclic loading testing. Static and fatigue behaviour and damage failure modes in unnotched/notched specimens plied in different manners were analysed and compared with each other.A variety of techniques (acoustic emission, two types of strain extensometer, high speed pho-tography, optical microscopy, scanning electron microscope, etc.) were used to examine thedamage of the laminates. Experimental results show that when these carbon/epoxy laminateswith edge notch normal to the direction of the load are axially loaded in static or fatiguetension, the crack does not propagate along the length of notch but is in the interface (fiberdirection). The notch has no substantial effect on the stresses at the unnotched portion. Thedamage failure mechanism is discussed.
Resumo:
The cyclic deformation behavior Of ultrafine-grained (UFG) Ni samples synthesized by the electrodeposition method was studied. Different from those made by severely plastic deformation, the UFG samples used in this study are characterized by large-angle grain boundaries. Behaviors from nanocrystalline Ni and coarse-grained Ni samples were compared with that Of Ultrafine-grained Ni. With in situ neutron diffraction. unusual evolutions of residual lattice strains as well as cyclic hardening and softening behavior were demonstrated during the cyclic deformation. The microstructural changes investigated by TEM are discussed with respect to the unusual lattice strain and cyclic hardening/softening. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The capacity degradation of bucket foundation in liquefied sand layer under cyclic loads such as equivalent dynamic ice-induced loads is studied. A simplified numerical model of liquefied sand layer has been presented based on the dynamic centrifuge experiment results. The ice-induced dynamic loads are modeled as equivalent sine cyclic loads, the liquefaction degree in different position of sand layer and effects of main factors are investigated. Subsequently, the sand resistance is represented by uncoupled, non-linear sand springs which describe the sub-failure behavior of the local sand resistance as well as the peak capacity of bucket foundation under some failure criterion. The capacity of bucket foundation is determined in liquefied sand layer and the rule of capacity degradation is analyzed. The capacity degradation in liquefied sand layer is analyzed comparing with that in non-liquefied sand layer. The results show that the liquefaction degree is 0.9 at the top and is only 0.06 at the bottom of liquefied sand layer. The numerical results are agreement well with the centrifugal experimental results. The value of the degradation of bucket capacity is 12% in numerical simulating whereas it is 17% in centrifugal experiments.
Modelagem do comportamento dinâmico e análise de fadiga de pontes rodoviárias mistas (aço-concreto).
Resumo:
Considerando-se os diversos carregamentos que solicitam a estrutura de uma ponte rodoviária, ao longo de sua vida útil, alguns possuem um comportamento essencialmente dinâmico, ou seja, variam com o tempo, diferentemente do que é considerado na prática corrente de projeto desse tipo de obra de arte. Em geral, os projetistas desse tipo de estrutura têm tratado carregamentos como o de vento, tráfego de veículos e de pedestres como ações de natureza estática, ignorando seu perfil cíclico. Tal consideração, em diversas situações de projeto, tende a minorar os efeitos das ações dinâmicas sobre o sistema estrutural. Além disso, estruturas submetidas a solicitações cíclicas, sob uma carga inferior à caga máxima suportada pelo material, estão sujeitas ao fenômeno da fadiga. A consideração adequada de todos estes aspectos mostra-se fundamentalmente importante para correta avaliação dos níveis de esforços solicitantes do sistema estrutural e, bem como, para a identificação de fenômenos importantes como o da fadiga que pode vir a provocar, por exemplo, a ruptura de componentes estruturais sem aviso prévio ou motivo aparente. Para tal, nesta dissertação as técnicas para a contagem de ciclos de tensão e a aplicação das regras de dano acumulado foram analisadas através de curvas do tipo S-N, associadas a diversas normas de projeto. A ponte rodoviária mista (aço-concreto) investigada neste estudo é constituída por seis vigas de aço longitudinais com enrijecedores transversais, oito transversinas e por um tabuleiro de concreto armado. O modelo numérico-computacional, desenvolvido para a análise dinâmica da ponte, foi elaborado com base em técnicas usuais de discretização através do método dos elementos finitos. As mesas e almas das vigas, assim como os enrijecedores , foram modelados por elementos de casca e laje de concreto armado, por elementos sólidos. O carregamento dinâmico avaliado no presente estudo diz respeito ao tráfego de veículos, cuja representação se dá a partir de sistemas "massa-mola-amortecedor". Os comboios formados são adotados como sendo semi-infinitos, deslocando-se com velocidade constante sobre a ponte. As conclusões da presente investigação versam acerca da vida útil de serviço dos elementos estruturais de pontes mistas (aço-concreto).
Resumo:
The relevance of the effective stress intensity range to crack growth is considered for constant and for variable amplitude loading. The accelerated and retarded growth associated with simple programmed loadings is reported for two steels and an aluminium alloy. The load interaction effects are due to several competing mechanisms, and not due to the single, popular mechanism of crack closure.
Resumo:
A vast body of experimental data has been accumulated on the constant amplitude crack growth response of structural metals in moist laboratory air. Usually the data is presented as plots of crack growth rate, da/dN, against stress intensity range, DELTA K. In order to extrapolate this data to fatigue crack growth in more active or more inert environments, to crack growth under variable amplitude loading, or to crack growth under multi-axial or mixed mode loading, the mechanisms of crack advance and crack closure should be considered. This paper briefly reviews the crack closure phenomenon and discusses the dominant causes of accelerated and retarded growth under changes in environment or type of loading. It is argued that simple constant amplitude data is often surprisingly accurate when used to predict crack growth in more complex situations. However, there are some cases where constant amplitude data lead to dangerously non-conservative predictions of fatigue life.
Resumo:
Numerous piles are often subjected to the combination of cyclic axial and cyclic lateral loads in service, such as piled foundations for offshore platforms which may suffer swaying and rocking motions owing to wind and wave actions. In this research, centrifuge tests were conducted to investigate the effect of previous cyclic axial loads on the performance of pile groups subjected to subsequent cyclic lateral loads. Different pile installation methods were also applied to study the different behaviour of bored and jacked pile groups subjected to cyclic loads. During lateral load cycling, it is seen that cyclic axial loads to which pile groups were previously subjected could reduce the pile cap permanent lateral displacement in the first lateral load cycle but do not influence the incremental rate of permanent displacement in the following lateral load cycles. Moreover, it is found that previous cyclic axial loads could improve the pile cap cyclic lateral secant stiffness, especially for the pre-jacked pile group. When rocking motions were induced by cyclic lateral loads, pile groups subjected to cyclic axial loads before have smaller permanent settlement than those without the cyclic axial loading effect. The designers of piles that are intended to resist significant lateral loads without excessive deformations in service may wish to deploy cyclic axial preloading, accordingly.
Resumo:
Fatigue stresses associated with extreme storms, vessel movements, and vortex-induced vibrations are critical to the performance of steel catenary risers. The critical location for fatigue damage often occurs within the touchdown zone, where cyclic interaction of the riser with the seabed occurs. Developing a model for seabed stiffness requires characterization of a number of complex nonlinear processes including trench formation, nonlinear soil stiffness, soil suction, and breakaway of the riser from the seafloor. The analytical framework utilized in this research considers the riser-seafloor interaction problem in terms of a pipe resting on a bed of springs, the stiffness characteristics of which are described by nonlinear load-deflection (P-y) curves. The P-y model allows for first penetration and uplift, as well as repenetration and small range motions within the bounding loop defined by extreme loading. The backbone curve is constructed from knowledge of the soil strength, the rate of strength increase with depth, trench width, and two additional parameters, while three parameters are necessary for the cyclic response. © ASCE 2009.
Resumo:
Tension-tension fatigue tests were conducted on unnotched injection moulded poly(phenylene ether ketone) (PEK-C) specimens with two stress ratios, R. The fatigue behaviour of this material is described. The S-N curves (S = alternating stress, N = number of cycles to failure) for different R values have the same general shape, but the curve for bigger R is shifted to long cycles. A fatigue lifetime inversion is observed from constructed S-N curves. Examinations of failure surfaces and analyses of the fatigue data reveal that the fatigue failure mechanism of the material studied is crack growth dominated. But the manner of the fatigue crack initiation and propagation depends on the maximum cyclic stress applied. At higher stresses, the fatigue crack originates at the corner of the specimen and propagates inward; at lower stresses, the fatigue crack nucleates at an internal flaw of the specimen and propagates outward. The fatigue lifetime inversion corresponds to the transition of crack initiation and propagation from one mode to the other. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
A flip chip component is a silicon chip mounted to a substrate with the active area facing the substrate. This paper presents the results of an investigation into the relationship between a number of important material properties and geometric parameters on the thermal-mechanical fatigue reliability of a standard flip chip design and a flip chip design with the use of microvias. Computer modeling has been used to analyze the mechanical conditions of flip chips under cyclic thermal loading where the Coffin-Manson empirical relationship has been used to predict the life time of the solder interconnects. The material properties and geometry parameters that have been investigated are the Young's modulus, the coefficient of thermal expansion (CTE) of the underfill, the out-of-plane CTE (CTEz) of the substrate, the thickness of the substrate, and the standoff height. When these parameters vary, the predicted life-times are calculated and some of the features of the results are explained. By comparing the predicted lifetimes of the two designs and the strain conditions under thermal loading, the local CTE mismatch has been found to be one of most important factors in defining the reliability of flip chips with microvias.
Resumo:
One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Composites of multi-walled carbon nanotubes (MWCNT) of varied functionality (unfunctionalised and carboxyl and amine functionalised) with polymethyl methacrylate (PMMA) were prepared for use as a bone cement. The MWCNT loadings ranged from 0.1 to 1.0 wt.%. The fatigue properties of these MWCNT–PMMA bone cements were characterised at MWCNT loading levels of 0.1 and 0.25 wt.% with the type and wt.% loading of MWCNT used having a strong influence on the number of cycles to failure. The morphology and degree of dispersion of the MWCNT in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in the fatigue properties were attributed to the MWCNT arresting/retarding crack propagation through the cement through a bridging effect and hindering crack propagation. MWCNT agglomerates were evident within the cement microstructure and the degree of agglomeration was dependent on the level of loading and functionality of the MWCNT. The biocompatibility of the MWCNT–PMMA cements at MWCNT loading levels upto 1.0 wt.% was determined by means of established biological cell culture assays using MG-63 cells. Cell attachment after 4 h was determined using the crystal violet staining assay. Cell viability was determined over 7 days in vitro using the standard colorimetric MTT assay. Confocal scanning laser microscopy and SEM analysis was also used to assess cell morphology on the various substrates.
Resumo:
While a significant number of geotechnical structures are subjected to static loading, many, such as avement subgrade, also are subjected to cyclic or dynamic loading. While the performance of saturated soils under repeated, cyclic or dynamic loading conditions is still a topic of research, similar interests are growing when the soilcondition is unsaturated. This paper examines the performance of unsaturated soils under repeated loading. As part of the research, a triaxial system was developed which incorporates small strain measurements using Hall-effect transducers, in addition to suction measurements taken using a psychrometer. Tests were conducted on samples of kaolin under constant water mass conditions. The results address the effects of compaction effort and water content at the time of compaction on the overall performance of unsaturated soils, under different amplitudes of loading and different confining pressures. The results show that suction in the sample reduced with increasing number of loading cycles of the same magnitude. The resilient modulus initially increased with increasing water content up to approximately optimum water content, and substantially reduced with further increase in water content. Key Words: suction, resilient modulus, subgrade, repeated loading, small strain measurements, compaction.
Resumo:
Fatigue damage calculations of unidirectional polymer composites is presented applying micromechanics theory. An orthotropic micromechanical damage model is integrated with an isotropic fatigue evolution model to predict the micromechanical fatigue damage of the composite structure. The orthotropic micromechanical damage model is used to predict the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue damage accumulated as a function of the number of cycles. The advantage of using this approach is the cheap determination of model parameters since the orthotropic damage model parameters can be determined using available data from quasi-static loading tests. Decomposition of the state variables down to the constituent scale is accomplished by micromechanics theory. Phenomenological damage evolution models are then postulated for each constituent and for interphase among them. Comparison between model predictions and experimental data is presented.
Resumo:
A new model for fatigue damage evolution of polymer matrix composites (PMC) is presented. The model is based on a combination of an orthotropic damage model and an isotropic fatigue evolution model. The orthotropic damage model is used to predict the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue damage accumulated as a function of the number of cycles. This approach facilitates the determination of model parameters since the orthotropic damage model parameters can be determined from available data from quasi-static-loading tests. Then, limited amount of fatigue data is needed to adjust the fatigue evolution model. The combination of these two models provides a compromise between efficiency and accuracy. Decomposition of the state variables down to the constituent scale is accomplished by micro-mechanics. Phenomenological damage evolution models are then postulated for each constituent and for the micro-structural interaction among them. Model parameters are determined from available experimental data. Comparison between model predictions and additional experimental data is presented.