996 resultados para sharing features
Resumo:
In this paper we describe CubIT, a multi-user presentation and collaboration system installed at the Queensland University of Technology’s (QUT) Cube facility. The ‘Cube’ is an interactive visualisation facility made up of five very large-scale interactive multi-panel wall displays, each consisting of up to twelve 55-inch multi-touch screens (48 screens in total) and massive projected display screens situated above the display panels. The paper outlines the unique design challenges, features, implementation and evaluation of CubIT. The system was built to make the Cube facility accessible to QUT’s academic and student population. CubIT enables users to easily upload and share their own media content, and allows multiple users to simultaneously interact with the Cube’s wall displays. The features of CubIT were implemented via three user interfaces, a multi-touch interface working on the wall displays, a mobile phone and tablet application and a web-based content management system. Each of these interfaces plays a different role and offers different interaction mechanisms. Together they support a wide range of collaborative features including multi-user shared workspaces, drag and drop upload and sharing between users, session management and dynamic state control between different parts of the system. The results of our evaluation study showed that CubIT was successfully used for a variety of tasks, and highlighted challenges with regards to user expectations regarding functionality as well as issues arising from public use.
Resumo:
This PhD research has provided novel solutions to three major challenges which have prevented the wide spread deployment of speaker recognition technology: (1) combating enrolment/ verification mismatch, (2) reducing the large amount of development and training data that is required and (3) reducing the duration of speech required to verify a speaker. A range of applications of speaker recognition technology from forensics in criminal investigations to secure access in banking will benefit from the research outcomes.
Resumo:
The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of 10^5, 10^2 and 10^0 sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of 10^-2, 10^-1 and 10^0 Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.
Resumo:
Abnormal event detection has attracted a lot of attention in the computer vision research community during recent years due to the increased focus on automated surveillance systems to improve security in public places. Due to the scarcity of training data and the definition of an abnormality being dependent on context, abnormal event detection is generally formulated as a data-driven approach where activities are modeled in an unsupervised fashion during the training phase. In this work, we use a Gaussian mixture model (GMM) to cluster the activities during the training phase, and propose a Gaussian mixture model based Markov random field (GMM-MRF) to estimate the likelihood scores of new videos in the testing phase. Further-more, we propose two new features: optical acceleration, and the histogram of optical flow gradients; to detect the presence of any abnormal objects and speed violations in the scene. We show that our proposed method outperforms other state of the art abnormal event detection algorithms on publicly available UCSD dataset.
Resumo:
Fine-grained leaf classification has concentrated on the use of traditional shape and statistical features to classify ideal images. In this paper we evaluate the effectiveness of traditional hand-crafted features and propose the use of deep convolutional neural network (ConvNet) features. We introduce a range of condition variations to explore the robustness of these features, including: translation, scaling, rotation, shading and occlusion. Evaluations on the Flavia dataset demonstrate that in ideal imaging conditions, combining traditional and ConvNet features yields state-of-theart performance with an average accuracy of 97:3%�0:6% compared to traditional features which obtain an average accuracy of 91:2%�1:6%. Further experiments show that this combined classification approach consistently outperforms the best set of traditional features by an average of 5:7% for all of the evaluated condition variations.
Resumo:
Early years researchers interested in storytelling have largely focused on the development of children’s language and social skills within constructed story sessions. Less focus has been given to the interactional aspects of storytelling in children’s everyday conversation and how the members themselves, the storytellers and story recipients, manage storytelling. An interactional view, using ethnomethodological and conversation analytic approaches, offers the opportunity to study children’s narratives in terms of ‘members work’. Detailed examination of a video-recorded interaction among a group of children in a preparatory year playground shows how the children managed interactions within conversational storytelling. Analyses highlight the ways in which children worked at gaining a turn and made a story tellable within a round of second stories. Investigating children’s competence-in-action ‘from within’, the findings from this research show how children invoke and accomplish competence through their interactions.
Resumo:
The detection of line-like features in images finds many applications in microanalysis. Actin fibers, microtubules, neurites, pilis, DNA, and other biological structures all come up as tenuous curved lines in microscopy images. A reliable tracing method that preserves the integrity and details of these structures is particularly important for quantitative analyses. We have developed a new image transform called the "Coalescing Shortest Path Image Transform" with very encouraging properties. Our scheme efficiently combines information from an extensive collection of shortest paths in the image to delineate even very weak linear features. © Copyright Microscopy Society of America 2011.
Resumo:
Selection of features that will permit accurate pattern classification is a difficult task. However, if a particular data set is represented by discrete valued features, it becomes possible to determine empirically the contribution that each feature makes to the discrimination between classes. This paper extends the discrimination bound method so that both the maximum and average discrimination expected on unseen test data can be estimated. These estimation techniques are the basis of a backwards elimination algorithm that can be use to rank features in order of their discriminative power. Two problems are used to demonstrate this feature selection process: classification of the Mushroom Database, and a real-world, pregnancy related medical risk prediction task - assessment of risk of perinatal death.
Resumo:
Background Whilst waiting for patients undergoing surgery, a lack of information regarding the patient’s status and the outcome of surgery, can contribute to the anxiety experienced by family members. Effective strategies for providing information to families are therefore required. Objectives To synthesize the best available evidence in relation to the most effective information-sharing interventions to reduce anxiety for families waiting for patients undergoing an elective surgical procedure. Inclusion criteria Types of participants All studies of family members over 18 years of age waiting for patients undergoing an elective surgical procedure were included, including those waiting for both adult and pediatric patients. Types of intervention All information-sharing interventions for families of patients undergoing an elective surgical procedure were eligible for inclusion in the review. Types of studies All randomized controlled trials (RCTs) quasi-experimental studies, case-controlled and descriptive studies, comparing one information-sharing intervention to another or to usual care were eligible for inclusion in the review. Types of outcomes Primary outcome: The level of anxiety amongst family members or close relatives whilst waiting for patients undergoing surgery, as measured by a validated instrument such as the S-Anxiety portion of the State-Trait Anxiety Inventory (STAI). Secondary outcomes: Family satisfaction and other measurements that may be considered indicators of stress and anxiety, such as mean arterial pressure (MAP) and heart rate. Search strategy A comprehensive search, restricted to English language only, was undertaken of the following databases from 1990 to May 2013: Medline, CINAHL, EMBASE, ProQuest, Web of Science, PsycINFO, Scopus, Dissertation and Theses PQDT (via ProQuest), Current Contents, CENTRAL, Google Scholar, OpenGrey, Clinical Trials, Science.gov, Current Controlled Trials and National Institute for Clinical Studies (NHMRC). Methodological quality Two independent reviewers critically appraised retrieved papers for methodological quality using the standardized critical appraisal instruments for randomized controlled trials and descriptive studies from the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instruments (JBI-MAStARI). Data extraction Two independent reviewers extracted data from included papers using a customized data extraction form. Data synthesis Statistical pooling was not possible, mainly due to issues with data reporting in two of the studies, therefore the results are presented in narrative form. Results Three studies with a total of 357 participants were included in the review. In-person reporting to family members was found to be effective in comparison with usual care in which no reports were provided. Telephone reporting was also found to be effective at reducing anxiety, in comparison with usual care, although not as effective as in-person reporting. The use of paging devices to keep family members informed were found to increase, rather than decrease anxiety. Conclusions Due to the lack of high quality research in this area, the strength of the conclusions are limited. It appears that in-person and telephone reporting to family members decreases anxiety, however the use of paging devices increases anxiety.
Resumo:
This paper addresses two common problems that users of various products and interfaces encounter— over-featured interfaces and product documentation. Over-featured interfaces are seen as a problem as they can confuse and over-complicate everyday interactions. Researchers also often claim that users do not read product documentation, although they are often exhorted to ‘RTFM’(read the field manual).We conducted two sets of studies with users which looked at the issues of both manuals and excess features with common domestic and personal products. The quantitative set was a series of questionnaires administered to 170 people over 7 years. The qualitative set consisted of two 6-month longitudinal studies based on diaries and interviews with a total of 15 participants. We found that manuals are not read by the majority of people, and most do not use all the features of the products that they own and use regularly. Men are more likely to do both than women, and younger people are less likely to use manuals than middle-aged and older ones. More educated people are also less likely to read manuals. Over-featuring and being forced to consult manuals also appears to cause negative emotional experiences. Implications of these findings are discussed.
Resumo:
Ovarian cancer is the most common cause of gynaecological cancer death, with an overall 5-year relative survival of 43%. Impaired physical wellbeing and overall quality of life (QoL) represent major concerns for women during and following ovarian cancer treatment, predict survival and are amenable to change through interventions. Exercise, now considered an important part of overall management of a number of cancers, improves short-term outcomes (e.g., function, fatigue, QoL) during chemotherapy...
Resumo:
A staged crime scene involves deliberate alteration of evidence by the offender to simulate events that did not occur for the purpose of misleading authorities (Geberth, 2006; Turvey, 2000). This study examined 115 staged homicides from the USA to determine common elements; victim and perpetrator characteristics; and specific features of different types of staged scenes. General characteristics include: multiple victims and offenders; a previous relationship be- tween parties involved; and victims discovered in their own home, often by the offender. Staged scenes were separated by type with staged burglaries, suicides, accidents, and car accidents examined in more detail. Each type of scene displays differently with separate indicators and common features. Features of staged burglaries were: no points of entry/exit staged; non-valuables taken; scene ransacking; offender self- injury; and offenders bringing weapons to the scene. Features of staged suicides included: weapon arrangement and simulating self-injury to the victim; rearranging the body; and removing valuables. Examples of elements of staged accidents were arranging the implement/weapon and re- positioning the deceased; while staged car accidents involved: transporting the body to the vehicle and arranging both; mutilation after death; attempts to secure an alibi; and clean up at the primary crime scene. The results suggest few staging behaviors are used, despite the credibility they may have offered the façade. This is the first peer-reviewed, published study to examine the specific features of these scenes, and is the largest sample studied to date.
Resumo:
A crucial issue with hybrid quantum secret sharing schemes is the amount of data that is allocated to the participants. The smaller the amount of allocated data, the better the performance of a scheme. Moreover, quantum data is very hard and expensive to deal with, therefore, it is desirable to use as little quantum data as possible. To achieve this goal, we first construct extended unitary operations by the tensor product of n, n ≥ 2, basic unitary operations, and then by using those extended operations, we design two quantum secret sharing schemes. The resulting dual compressible hybrid quantum secret sharing schemes, in which classical data play a complementary role to quantum data, range from threshold to access structure. Compared with the existing hybrid quantum secret sharing schemes, our proposed schemes not only reduce the number of quantum participants, but also the number of particles and the size of classical shares. To be exact, the number of particles that are used to carry quantum data is reduced to 1 while the size of classical secret shares also is also reduced to l−2 m−1 based on ((m+1, n′)) threshold and to l−2 r2 (where r2 is the number of maximal unqualified sets) based on adversary structure. Consequently, our proposed schemes can greatly reduce the cost and difficulty of generating and storing EPR pairs and lower the risk of transmitting encoded particles.