944 resultados para sensor self-deployment
Resumo:
Las redes del futuro, incluyendo las redes de próxima generación, tienen entre sus objetivos de diseño el control sobre el consumo de energía y la conectividad de la red. Estos objetivos cobran especial relevancia cuando hablamos de redes con capacidades limitadas, como es el caso de las redes de sensores inalámbricos (WSN por sus siglas en inglés). Estas redes se caracterizan por estar formadas por dispositivos de baja o muy baja capacidad de proceso y por depender de baterías para su alimentación. Por tanto la optimización de la energía consumida se hace muy importante. Son muchas las propuestas que se han realizado para optimizar el consumo de energía en este tipo de redes. Quizás las más conocidas son las que se basan en la planificación coordinada de periodos de actividad e inactividad, siendo una de las formas más eficaces para extender el tiempo de vida de las baterías. La propuesta que se presenta en este trabajo se basa en el control de la conectividad mediante una aproximación probabilística. La idea subyacente es que se puede esperar que una red mantenga la conectividad si todos sus nodos tienen al menos un número determinado de vecinos. Empleando algún mecanismo que mantenga ese número, se espera que se pueda mantener la conectividad con un consumo energético menor que si se empleara una potencia de transmisión fija que garantizara una conectividad similar. Para que el mecanismo sea eficiente debe tener la menor huella posible en los dispositivos donde se vaya a emplear. Por eso se propone el uso de un sistema auto-adaptativo basado en control mediante lógica borrosa. En este trabajo se ha diseñado e implementado el sistema descrito, y se ha probado en un despliegue real confirmando que efectivamente existen configuraciones posibles que permiten mantener la conectividad ahorrando energía con respecto al uso de una potencia de transmisión fija. ABSTRACT. Among the design goals for future networks, including next generation networks, we can find the energy consumption and the connectivity. These two goals are of special relevance when dealing with constrained networks. That is the case of Wireless Sensors Networks (WSN). These networks consist of devices with low or very low processing capabilities. They also depend on batteries for their operation. Thus energy optimization becomes a very important issue. Several proposals have been made for optimizing the energy consumption in this kind of networks. Perhaps the best known are those based on the coordinated planning of active and sleep intervals. They are indeed one of the most effective ways to extend the lifetime of the batteries. The proposal presented in this work uses a probabilistic approach to control the connectivity of a network. The underlying idea is that it is highly probable that the network will have a good connectivity if all the nodes have a minimum number of neighbors. By using some mechanism to reach that number, we hope that we can preserve the connectivity with a lower energy consumption compared to the required one if a fixed transmission power is used to achieve a similar connectivity. The mechanism must have the smallest footprint possible on the devices being used in order to be efficient. Therefore a fuzzy control based self-adaptive system is proposed. This work includes the design and implementation of the described system. It also has been validated in a real scenario deployment. We have obtained results supporting that there exist configurations where it is possible to get a good connectivity saving energy when compared to the use of a fixed transmission power for a similar connectivity.
Resumo:
In recent years, several researchers have shown the good performance of alkali activated slag cement and concretes. Besides their good mechanical properties and durability, this type of cement is a good alternative to Portland cements if sustainability is considered. Moreover, multifunctional cement composites have been developed in the last decades for their functional applications (self-sensing, EMI shielding, self-heating, etc.). In this study, the strain and damage sensing possible application of carbon fiber reinforced alkali activated slag pastes has been evaluated. Cement pastes with 0, 0.29 and 0.58 vol % carbon fiber addition were prepared. Both carbon fiber dosages showed sensing properties. For strain sensing, function gage factors of up to 661 were calculated for compressive cycles. Furthermore, all composites with carbon fibers suffered a sudden increase in their resistivity when internal damages began, prior to any external signal of damage. Hence, this material may be suitable as strain or damage sensor.
Resumo:
Identifying water wastage in forms of leaks in a water distribution network of any city becomes essential as droughts are presenting serious threats to few major cities. In this paper, we propose a deployment of sensor network for monitoring water flow in any water distribution network. We cover the issues related with designing such a dedicated sensor network by considering types of sensors required, sensors' functionality, data collection, and providing computation serving as leak detection mechanism. The main focus of this paper is on appropriate network segmentation that provides the base for hierarchical approach to pipes' failure detection. We show a method for sensors allocation to the network in order to facilitate effective pipes monitoring. In general, the identified computational problem belongs to hard problems. The paper shows a heuristic method to build effective hierarchy of the network segmentation.
Resumo:
Conventional detection scheme for self-mixing sensors uses an integrated photodiode within the laser package to monitor the self mixing signal. This arrangement can be simplified by directly obtaining the self-mixing signals across the laser diode itself and omitting the photodiode. This work reports on a Vertical-Cavity Surface-Emitting Laser (VCSEL) based selfmixing sensor using the laser junction voltage to obtain the selfmixing signal. We show that the same information can be obtained with only minor changes to the extraction circuitry leading to potential cost saving with reductions in component costs and complexity and significant increase in bandwidth favoring high speed modulation. Experiments using both photo current and voltage detection were carried out and the results obtained show good agreement with the theory.
Resumo:
This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.
Resumo:
This thesis presents a novel high-performance approach to time-division-multiplexing (TDM) fibre Bragg grating (FBG) optical sensors, known as the resonant cavity architecture. A background theory of FBG optical sensing includes several techniques for multiplexing sensors. The limitations of current wavelength-division-multiplexing (WDM) schemes are contrasted against the technological and commercial advantage of TDM. The author’s hypothesis that ‘it should be possible to achieve TDM FBG sensor interrogation using an electrically switched semiconductor optical amplifier (SOA)’ is then explained. Research and development of a commercially viable optical sensor interrogator based on the resonant cavity architecture forms the remainder of this thesis. A fully programmable SOA drive system allows interrogation of sensor arrays 10km long with a spatial resolution of 8cm and a variable gain system provides dynamic compensation for fluctuating system losses. Ratiometric filter- and diffractive-element spectrometer-based wavelength measurement systems are developed and analysed for different commercial applications. The ratiometric design provides a low-cost solution that has picometre resolution and low noise using 4% reflective sensors, but is less tolerant to variation in system loss. The spectrometer design is more expensive, but delivers exceptional performance with picometre resolution, low noise and tolerance to 13dB system loss variation. Finally, this thesis details the interrogator’s peripheral components, its compliance for operation in harsh industrial environments and several examples of commercial applications where it has been deployed. Applications include laboratory instruments, temperature monitoring systems for oil production, dynamic control for wind-energy and battery powered, self-contained sub-sea strain monitoring.
Resumo:
Gay and lesbian prides and marches are of crucial relevance to the way in which non-heterosexual lives are imagined internationally despite regional and national differences. Quite often, these events are connected not only with increased activist mobilisation, but also with great controversy, which is the case of Poland, where gay and lesbian marches have been attacked by right-wing protesters and cancelled by right-wing city authorities on a number of occasions. Overall, the scholars analysing these events have largely focused on the macro-context of the marches, paying less attention to the movement actors behind these events. The contribution of this thesis lies not only in filling a gap when it comes to research on sexual minorities in Eastern Europe/Poland, but also in its focus on micro-level movement processes and engagement with theories of collective identity and citizenship. Furthermore, this thesis challenges the inscription of Eastern European/Polish movements into the narrative of victimhood and delayed development when compared to LGBT movements in the Global North. This thesis is grounded in qualitative research including participant observation of public activist events as well as forty semi-structured interviews with the key organisers of gay and lesbian marches in Warsaw, Poznan and Krakow between 2001 and 2007, and five of these interviews were further accompanied by photo-elicitation (self-directed photography) methods. Starting from the processes whereby from 2001 onwards, marches, pride parades and demonstrations became the most visible and contested activity of the Polish lesbian and gay movement, this thesis examines how the activists redefined the meanings of citizenship in the post-transformation context, by incorporating the theme of sexual minorities' rights. Using Bernstein's (1997, 2002, 2005, 2008) concept of identity deployment, I show how and when movement actors use identity tactically, depending on their goals. Specifically, in the context of movement-media interactions, I examine the ways in which the activists use marches to challenge the negative representations of sexual minorities in Poland. I also broaden Bernstein's framework to include the discussion of emotion work as relevant to public LGBT activism in Poland. Later, I discuss how the emotions of protests allowed the activists to inscribe their efforts into the "revolutionary" narrative of the Polish Solidarity movement and by extension, the frame of citizenship. Finally, this thesis engages with the dilemmas of identity deployment strategies, and seeks to problematise the dichotomy between identity-based gay and lesbian assimilationist strategies and the anti-identity queer politics.
Resumo:
We report a novel demodulation scheme for the detection of small Bragg wavelength shifts in a fiber Bragg grating strain sensor by exploiting the optical feedback reflected from the grating structure back into a 1310 nm laser diode integrating a photodiode. The dynamic strain generated by a mechanical vibrator is applied transversely to the fiber Bragg grating and the desired longitudinal strain values inferred from the detected sawtooth-like optical feedback signals. Preliminary results demonstrate the feasibility of this demodulation technique for strain measurement which could be further extended to fiber Bragg grating-based sensors for the detection of different measurands in general.
Resumo:
Designers of self-adaptive systems often formulate adaptive design decisions, making unrealistic or myopic assumptions about the system's requirements and environment. The decisions taken during this formulation are crucial for satisfying requirements. In environments which are characterized by uncertainty and dynamism, deviation from these assumptions is the norm and may trigger 'surprises'. Our method allows designers to make explicit links between the possible emergence of surprises, risks and design trade-offs. The method can be used to explore the design decisions for self-adaptive systems and choose among decisions that better fulfil (or rather partially fulfil) non-functional requirements and address their trade-offs. The analysis can also provide designers with valuable input for refining the adaptation decisions to balance, for example, resilience (i.e. Satisfiability of non-functional requirements and their trade-offs) and stability (i.e. Minimizing the frequency of adaptation). The objective is to provide designers of self adaptive systems with a basis for multi-dimensional what-if analysis to revise and improve the understanding of the environment and its effect on non-functional requirements and thereafter decision-making. We have applied the method to a wireless sensor network for flood prediction. The application shows that the method gives rise to questions that were not explicitly asked before at design-time and assists designers in the process of risk-aware, what-if and trade-off analysis.
Resumo:
Context/Motivation - Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. Questions/Problems - One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. Principal ideas/results - In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs. © 2013 Springer-Verlag.
Resumo:
We report a novel demodulation scheme for the detection of small Bragg wavelength shifts in a fiber Bragg grating strain sensor by exploiting the optical feedback reflected from the grating structure back into a 1310 nm laser diode integrating a photodiode. The dynamic strain generated by a mechanical vibrator is applied transversely to the fiber Bragg grating and the desired longitudinal strain values inferred from the detected sawtooth-like optical feedback signals. Preliminary results demonstrate the feasibility of this demodulation technique for strain measurement which could be further extended to fiber Bragg grating-based sensors for the detection of different measurands in general.
Resumo:
In-Motes Bins is an agent based real time In-Motes application developed for sensing light and temperature variations in an environment. In-Motes is a mobile agent middleware that facilitates the rapid deployment of adaptive applications in Wireless Sensor Networks (WSN's). In-Motes Bins is based on the injection of mobile agents into the WSN that can migrate or clone following specific rules and performing application specific tasks. Using In-Motes we were able to create and rapidly deploy our application on a WSN consisting of 10 MICA2 motes. Our application was tested in a wine store for a period of four months. In this paper we present the In-Motes Bins application and provide a detailed evaluation of its implementation. © 2007 IEEE.
Resumo:
Self-awareness and self-expression are promising architectural concepts for embedded systems to be equipped with to match them with dedicated application scenarios and constraints in the avionic and space-flight industry. Typically, these systems operate in largely undefined environments and are not reachable after deployment for a long time or even never ever again. This paper introduces a reference architecture as well as a novel modelling and simulation environment for self-aware and self-expressive systems with transaction level modelling, simulation and detailed modelling capabilities for hardware aspects, precise process chronology execution as well as fine timing resolutions. Furthermore, industrial relevant system sizes with several self-aware and self-expressive nodes can be handled by the modelling and simulation environment.
Resumo:
In this article we present an approach to object tracking handover in a network of smart cameras, based on self-interested autonomous agents, which exchange responsibility for tracking objects in a market mechanism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to learn the vision graph, that is, the camera neighbourhood relations, during runtime, which may then be used to optimise communication between cameras. The key benefits of our completely decentralised approach are on the one hand generating the vision graph online, enabling efficient deployment in unknown scenarios and camera network topologies, and on the other hand relying only on local information, increasing the robustness of the system. Since our market-based approach does not rely on a priori topology information, the need for any multicamera calibration can be avoided. We have evaluated our approach both in a simulation study and in network of real distributed smart cameras.
Resumo:
This article demonstrates the use of embedded fibre Bragg gratings as vector bending sensor to monitor two-dimensional shape deformation of a shape memory polymer plate. The shape memory polymer plate was made by using thermal-responsive epoxy-based shape memory polymer materials, and the two fibre Bragg grating sensors were orthogonally embedded, one on the top and the other on the bottom layer of the plate, in order to measure the strain distribution in both longitudinal and transverse directions separately and also with temperature reference. When the shape memory polymer plate was bent at different angles, the Bragg wavelengths of the embedded fibre Bragg gratings showed a red-shift of 50 pm/°caused by the bent-induced tensile strain on the plate surface. The finite element method was used to analyse the stress distribution for the whole shape recovery process. The strain transfer rate between the shape memory polymer and optical fibre was also calculated from the finite element method and determined by experimental results, which was around 0.25. During the experiment, the embedded fibre Bragg gratings showed very high temperature sensitivity due to the high thermal expansion coefficient of the shape memory polymer, which was around 108.24 pm/°C below the glass transition temperature (Tg) and 47.29 pm/°C above Tg. Therefore, the orthogonal arrangement of the two fibre Bragg grating sensors could provide a temperature compensation function, as one of the fibre Bragg gratings only measures the temperature while the other is subjected to the directional deformation. © The Author(s) 2013.