1000 resultados para self-escrowed cryptosystems
Resumo:
Electronics Letters Vol.38, nº 19
Resumo:
We numerically study a simple fluid composed of particles having a hard-core repulsion complemented by two patchy attractive sites on the particle poles. An appropriate choice of the patch angular width allows for the formation of ring structures which, at low temperatures and low densities, compete with the growth of linear aggregates. The simplicity of the model makes it possible to compare simulation results and theoretical predictions based on the Wertheim perturbation theory, specialized to the case in which ring formation is allowed. Such a comparison offers a unique framework for establishing the quality of the analytic predictions. We find that the Wertheim theory describes remarkably well the simulation results.
Resumo:
We comment on the nature of the ordering transition of a model of equilibrium polydisperse rigid rods on the square lattice, which is reported by Lopez et al. to exhibit random percolation criticality in the canonical ensemble, in sharp contrast to (i) our results of Ising criticality for the same model in the grand canonical ensemble [Phys. Rev. E 82, 061117 (2010)] and (ii) the absence of exponent(s) renormalization for constrained systems with logarithmic specific-heat anomalies predicted on very general grounds by Fisher [Phys. Rev. 176, 257 (1968)].
Resumo:
We investigate the nature of the ordered phase and the orientational correlations between adjacent layers of the confined three-dimensional self-assembled rigid rod model, on the cubic lattice. We find that the ordered phase at finite temperatures becomes uniaxial in the thermodynamic limit, by contrast to the ground state (partial) order where the orientation of the uncorrelated layers is perpendicular to one of the three lattice directions. The increase of the orientational correlation between layers as the number of layers increases suggests that the unconfined model may also exhibit uniaxial ordering at finite temperatures.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Educação Médica. 1994, 5(3):178-181.
Resumo:
To boost logic density and reduce per unit power consumption SRAM-based FPGAs manufacturers adopted nanometric technologies. However, this technology is highly vulnerable to radiation-induced faults, which affect values stored in memory cells, and to manufacturing imperfections. Fault tolerant implementations, based on Triple Modular Redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like module placement, the effects of multi- bit upsets (MBU) or fault accumulation, have also to be addressed. In case of a fault occurrence the correct operation of the affected module must be restored and/or the current state of the circuit coherently re-established. A solution that enables the autonomous restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in real-time, while keeping the normal operation of the circuit, is presented in this paper.
Resumo:
To increase the amount of logic available in SRAM-based FPGAs manufacturers are using nanometric technologies to boost logic density and reduce prices. However, nanometric scales are highly vulnerable to radiation-induced faults that affect values stored in memory cells. Since the functional definition of FPGAs relies on memory cells, they become highly prone to this type of faults. Fault tolerant implementations, based on triple modular redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like the effects of multi-bit upsets (MBU) or fault accumulation, have also to be addressed. Furthermore, in case of a fault occurrence the correct operation of the affected module must be restored and the current state of the circuit coherently re-established. A solution that enables the autonomous correct restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in realtime, while keeping the normal operation of the circuit, is presented in this paper.
Resumo:
The new generations of SRAM-based FPGA (field programmable gate array) devices are the preferred choice for the implementation of reconfigurable computing platforms intended to accelerate processing in real-time systems. However, FPGA's vulnerability to hard and soft errors is a major weakness to robust configurable system design. In this paper, a novel built-in self-healing (BISH) methodology, based on run-time self-reconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the dynamic reconfiguration features offered by new FPGA families. Meanwhile, modular redundancy assures that the system still works correctly
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 232 – 235, Seattle, EUA
Resumo:
Proceedings of IEEE, ISCAS 2003, Vol.I, pp. 877-880
Resumo:
Past studies found three types of infant coping behaviour during Face-to-Face Still-Face paradigm (FFSF): a Positive Other-Directed Coping; a Negative Other-Directed Coping and a Self-Directed Coping. In the present study, we investigated whether those types of coping styles are predicted by: infants’ physiological responses; maternal representations of their infant’s temperament; maternal interactive behaviour in free play; and infant birth and medical status. The sample consisted of 46, healthy, prematurely born infants and their mothers. At one month, infant heart rate was collected in basal. At three months old (corrected age), infant heart-rate was registered during FFSF episodes. Mothers described their infants’ temperament using a validated Portuguese temperament scale, at infants three months of corrected age. As well, maternal interactive behaviour was evaluated during a free play situation using CARE-Index. Our findings indicate that positive coping behaviours were correlated with gestational birth weight, heart rate (HR), gestational age, and maternal sensitivity in free play. Gestational age and maternal sensitivity predicted Positive Other-Direct Coping behaviours. Moreover, Positive Other-Direct coping was negatively correlated with HR during Still-Face Episode. Self-directed behaviours were correlated with HR during Still-Face Episode and Recover Episode and with maternal controlling/intrusive behaviour. However, only maternal behaviour predicted Self-direct coping. Early social responses seem to be affected by infants’ birth status and by maternal interactive behaviour. Therefore, internal and external factors together contribute to infant ability to cope and to re-engage after stressful social events.
Resumo:
Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SIX mixes were produced; 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% f(ad), respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. (C) 2015 Elsevier Ltd. All rights reserved.