889 resultados para root weight and elongation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 72 eggs from a group of 100 white laying hens housed in standard cages were analyzed. Thirty-six eggs were retired when the hens had 44 week of age and the other 36 eggs were retired eight weeks afterwards. Each group of 36 eggs was radomly divided in three groups of 12 eggs. First group was analyzed at once (storage system C); second one was kept during one week in the refrigerator (5ºC) (storage system R), and third group were kept also one week but on ambient temperature (25ºC) (storage system ET). The hen age, egg weight and storage system had not significant (P>0.05) effect on shell thickness. The specific gravity (SG) has a positive relation with shell quality. The egg class and storage system significantly (P<0,05) affected to SG, while no influence of bird age on this variable was observed. The yolk color increased with hen age but storage system had not effect on this variable. The increase of the hen age and the R and AT storage systems significantly (P<0.05) reduced albumen height (H) and the interaction hen age x storage system was significant (P<0.025) for this variable. The reduction of the H due to R and ET storage systems was higher in the eggs from hens with 52 weeks of age than in those from hens with 44 weeks of age. The Haugh units (HU) was significantly (P<0.05) affected by hen age, egg class and storage system. The hen age increase reduced HU and the R and ET eggs had lower HU than C eggs. It is concluded that the bird age and storage system with high temperatures reduced the egg quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sinorhizobium meliloti bacteria produce a signal molecule that enhances root respiration in alfalfa (Medicago sativa L.) and also triggers a compensatory increase in whole-plant net carbon assimilation. Nuclear magnetic resonance, mass spectrometry, and ultraviolet–visible absorption identify the enhancer as lumichrome, a common breakdown product of riboflavin. Treating alfalfa roots with 3 nM lumichrome increased root respiration 21% (P < 0.05) within 48 h. A closely linked increase in net carbon assimilation by the shoot compensated for the enhanced root respiration. For example, applying 5 nM lumichrome to young alfalfa roots increased plant growth by 8% (P < 0.05) after 12 days. Soaking alfalfa seeds in 5 nM lumichrome before germination increased growth by 18% (P < 0.01) over the same period. In both cases, significant growth enhancement (P < 0.05) was evident only in the shoot. S. meliloti requires exogenous CO2 for growth and may benefit directly from the enhanced root respiration that is triggered by lumichrome. Thus Sinorhizobium–alfalfa associations, which ultimately form symbiotic N2-reducing root nodules, may be favored at an early developmental stage by lumichrome, a previously unrecognized mutualistic signal. The rapid degradation of riboflavin to lumichrome under many physiological conditions and the prevalence of riboflavin release by rhizosphere bacteria suggest that events demonstrated here in the S. meliloti–alfalfa association may be widely important across many plant–microbe interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein synthesis (PS) has been considered essential to sustain mammalian life, yet was found to be virtually arrested for weeks in brain and other organs of the hibernating ground squirrel, Spermophilus tridecemlineatus. PS, in vivo, was below the limit of autoradiographic detection in brain sections and, in brain extracts, was determined to be 0.04% of the average rate from active squirrels. Further, it was reduced 3-fold in cell-free extracts from hibernating brain at 37°C, eliminating hypothermia as the only cause for protein synthesis inhibition (active, 0.47 ± 0.08 pmol/mg protein per min; hibernator, 0.16 ± 0.05 pmol/mg protein per min, P < 0.001). PS suppression involved blocks of initiation and elongation, and its onset coincided with the early transition phase into hibernation. An increased monosome peak with moderate ribosomal disaggregation in polysome profiles and the greatly increased phosphorylation of eIF2α are both consistent with an initiation block in hibernators. The elongation block was demonstrated by a 3-fold increase in ribosomal mean transit times in cell-free extracts from hibernators (active, 2.4 ± 0.7 min; hibernator, 7.1 ± 1.4 min, P < 0.001). No abnormalities of ribosomal function or mRNA levels were detected. These findings implicate suppression of PS as a component of the regulated shutdown of cellular function that permits hibernating ground squirrels to tolerate “trickle” blood flow and reduced substrate and oxygen availability. Further study of the factors that control these phenomena may lead to identification of the molecular mechanisms that regulate this state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To examine the possibility that low birth weight is a feature of the inherited predisposition to high blood pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated Zn compartmentation in the root, Zn transport into the xylem, and Zn absorption into leaf cells in Thlaspi caerulescens, a Zn-hyperaccumulator species, and compared them with those of a related nonaccumulator species, Thlaspi arvense. 65Zn-compartmental analysis conducted with roots of the two species indicated that a significant fraction of symplasmic Zn was stored in the root vacuole of T. arvense, and presumably became unavailable for loading into the xylem and subsequent translocation to the shoot. In T. caerulescens, however, a smaller fraction of the absorbed Zn was stored in the root vacuole and was readily transported back into the cytoplasm. We conclude that in T. caerulescens, Zn absorbed by roots is readily available for loading into the xylem. This is supported by analysis of xylem exudate collected from detopped Thlaspi species seedlings. When seedlings of the two species were grown on either low (1 μm) or high (50 μm) Zn, xylem sap of T. caerulescens contained approximately 5-fold more Zn than that of T. arvense. This increase was not correlated with a stimulated production of any particular organic or amino acid. The capacity of Thlaspi species cells to absorb 65Zn was studied in leaf sections and leaf protoplasts. At low external Zn levels (10 and 100 μm), there was no difference in leaf Zn uptake between the two Thlaspi species. However, at 1 mm Zn2+, 2.2-fold more Zn accumulated in leaf sections of T. caerulescens. These findings indicate that altered tonoplast Zn transport in root cells and stimulated Zn uptake in leaf cells play a role in the dramatic Zn hyperaccumulation expressed in T. caerulescens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TFIIF is unique among the general transcription factors because of its ability to control the activity of RNA polymerase II at both the initiation and elongation stages of transcription. Mammalian TFIIF, a heterodimer of approximately 30-kDa (RAP30) and approximately 70-kDa (RAP74) subunits, assists TFIIB in recruiting RNA polymerase II into the preinitiation complex and activates the overall rate of RNA chain elongation by suppressing transient pausing by polymerase at many sites on DNA templates. A major objective of efforts to understand how TFIIF regulates transcription has been to establish the relationship between its initiation and elongation activities. Here we establish this relationship by demonstrating that TFIIF transcriptional activities are mediated by separable functional domains. To accomplish this, we sought and identified distinct classes of RAP30 mutations that selectively block TFIIF activity in transcription initiation and elongation. We propose that (i) TFIIF initiation activity is mediated at least in part by RAP30 C-terminal sequences that include a cryptic DNA-binding domain similar to conserved region 4 of bacterial sigma factors and (ii) TFIIF elongation activity is mediated in part by RAP30 sequences located immediately upstream of the C terminus in a region proposed to bind RNA polymerase II and by additional sequences located in the RAP30 N terminus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historically an ectoparasite of the native Giant honey bee Apis dorsata, the mite Tropilaelaps mercedesae has switched hosts to the introduced western honey bee Apis mellifera throughout much of Asia. Few data regarding lethal and sub-lethal effects of T. mercedesae on A. mellifera exist, despite its similarity to the devastating mite Varroa destructor. Here we artificially infested worker brood of A. mellifera with T. mercedesae to investigate lethal (longevity) and sub-lethal (emergence weight, Deformed wing virus (DWV) levels and clinical symptoms of DWV) effects of the mite on its new host. The data show that T. mercedesae infestation significantly reduced host longevity and emergence weight, and promoted both DWV levels and associated clinical symptoms. Our results suggest that T. mercedesae is a potentially important parasite to the economically important A. mellifera honey bee.