919 resultados para reverse transcription - PCR.R
Resumo:
Knowledge of cattle tick (Rhipicephalus (Boophilus) microplus; Acari: Ixodidae) molecular and cellular pathways has been hampered by the lack of an annotated genome. In addition, most of the tick expressed sequence tags (ESTs) available to date consist of similar to 50% unassigned sequences without predicted functions. The most common approach to address this has been the application of RNA interference (RNAi) methods to investigate genes and their pathways. This approach has been widely adopted in tick research despite minimal knowledge of the tick RNAi pathway and double-stranded RNA (dsRNA) uptake mechanisms. A strong knockdown phenotype of adult female ticks had previously been observed using a 594 bp dsRNA targeting the cattle tick homologue for the Drosophila Ubiquitin-63E gene leading to nil or deformed eggs. A NimbleGen cattle tick custom microarray based on the BmiGI.V2 database of R. microplus ESTs was used to evaluate the expression of mRNAs harvested from ticks treated with the tick Ubiquitin-63E 594 bp dsRNA compared with controls. A total of 144 ESTs including TC6372 (Ubiquitin-63E) were down-regulated with 136 ESTs up-regulated following treatment. The results obtained substantiated the knockdown phenotype with ESTs identified as being associated with ubiquitin proteolysis as well as oogenesis, embryogenesis, fatty acid synthesis and stress responses. A bioinformatics analysis was undertaken to predict off-target effects (OTE) resulting from the in silico dicing of the 594 bp Ubiquitin-63E dsRNA which identified 10 down-regulated ESTs (including TC6372) within the list of differentially expressed probes on the microarrays. Subsequent knockdown experiments utilising 196 and 109 bp dsRNAs, and a cocktail of short hairpin RNAs (shRNA) targeting Ubiquitin-63E, demonstrated similar phenotypes for the dsRNAs but nil effect following shRNA treatment. Quantitative reverse transcriptase PCR analysis confirmed differential expression of TC6372 and selected ESTs. Our study demonstrated the minimisation of predicted OTEs in the shorter dsRNA treatments (similar to 100-200 bp) and the usefulness of microarrays to study knockdown phenotypes.
Resumo:
A 5-year-old Australian stock horse in Monto, Queensland, Australia, developed neurological signs and was euthanized after a 6-day course of illness. Histological examination of the brain and spinal cord revealed moderate to severe subacute, nonsuppurative encephalomyelitis. Sections of spinal cord stained positively in immunohistochemistry with a flavivirus-specific monoclonal antibody. Reverse transcription polymerase chain reaction assay targeting the envelope gene of flavivirus yielded positive results from brain, spinal cord, cerebrospinal fluid, and facial nerve. A flavivirus was isolated from the cerebrum and spinal cord. Nucleotide sequences obtained from amplicons from both tissues and virus isolated in cell culture were compared with those in GenBank and had 96-98% identity with Murray Valley encephalitis virus. The partial envelope gene sequence of the viral isolate clustered into genotype 1 and was most closely related to a previous Queensland isolate.
Resumo:
Isonicotinic acid hydrazide (isoniazid), one of the most potent antitubercular drugs, was recently shown, in our laboratory, to form two different complexes with copper, depending upon the oxidation state of the metal ion. Both the complexes have been shown to possess antiviral activity against Rous sarcoma virus, an RNA tumor virus. The antiviral activity of the complexes has been attributed to their ability to inhibit the endogenous reverse transcriptase activity of RSV. More recent studies in our laboratory indicate that both these complexes inhibit both endogenous and exogenous reactions. As low a final concentration as 50 μM of the cupric and the cuprous complexes inhibits the endogenous reaction to the extent of 93 and 75 per cent respectively. Inhibition of the exogenous reaction varies with the templates. The inhibition can be reversed by either β-mercaptoethanol or ethylene-diamine-tetra-acetic acid. The specificity of this inhibition has been ascertained by using a synthetic primer-template, −(dG)not, vert, similar15−(rCm)n, which is highly specific for reverse transcriptases. The inhibition is found to be template specific. The studies carried out, using various synthetic primer-templates, show the inhibition of both the steps of reverse transcription by the copper complexes of isoniazid.
Resumo:
In the present study, we identified a novel asthma susceptibility gene, NPSR1 (neuropeptide S receptor 1) on chromosome 7p14.3 by the positional cloning strategy. An earlier significant linkage mapping result among Finnish Kainuu asthma families was confirmed in two independent cohorts: in asthma families from Quebec, Canada and in allergy families from North Karelia, Finland. The linkage region was narrowed down to a 133-kb segment by a hierarchial genotyping method. The observed 77-kb haplotype block showed 7 haplotypes and a similar risk and nonrisk pattern in all three populations studied. All seven haplotypes occur in all three populations at frequences > 2%. Significant elevated relative risks were detected for elevated total IgE (immunoglobulin E) or asthma. Risk effects of the gene variants varied from 1.4 to 2.5. NPSR1 belongs to the G protein-coupled receptor (GPCR) family with a topology of seven transmembrane domains. NPSR1 has 9 exons, with the two main transcripts, A and B, encoding proteins of 371 and 377 amino acids, respectively. We detected a low but ubiquitous expression level of NPSR1-B in various tissues and endogenous cell lines while NPSR1-A has a more restricted expression pattern. Both isoforms were expressed in the lung epithelium. We observed aberrant expression levels of NPSR1-B in smooth muscle in asthmatic bronchi as compared to healthy. In an experimental mouse model, the induced lung inflammation resulted in elevated Npsr1 levels. Furthermore, we demonstrated that the activation of NPSR1 with its endogenous agonist, neuropeptide S (NPS), resulted in a significant inhibition of the growth of NPSR1-A overexpressing stable cell lines (NPSR1-A cells). To determine which target genes were regulated by the NPS-NPSR1 pathway, NPSR1-A cells were stimulated with NPS, and differentially expressed genes were identified using the Affymetrix HGU133Plus2 GeneChip. A total of 104 genes were found significantly up-regulated and 42 down-regulated 6 h after NPS administration. The up-regulated genes included many neuronal genes and some putative susceptibility genes for respiratory disorders. By Gene Ontology enrichment analysis, the biological process terms, cell proliferation, morphogenesis and immune response were among the most altered. The expression of four up-regulated genes, matrix metallopeptidase 10 (MMP10), INHBA (activin A), interleukin 8 (IL8) and EPH receptor A2 (EPHA2), were verified and confirmed by quantitative reverse-transcriptase-PCR. In conclusion, we identified a novel asthma susceptibility gene, NPSR1, on chromosome 7p14.3. NPS-NPSR1 represents a novel pathway that regulates cell proliferation and immune responses, and thus may have functional relevance in the pathogenesis of asthma.
Resumo:
The purpose of this research project was to understand the steps of the retrotransposon BARE (BArley REtrotransposon) life cycle, from regulation of transcription to Virus-Like Particle (VLP) formation and ultimate integration back into the genome. Our study concentrates mainly on BARE1 transcriptional regulation because transcription is the crucial first step in the retrotransposon life cycle. The BARE element is a Class I LTR (Long Terminal Repeat) retrotransposon belonging to the Copia superfamily and was originally isolated in our research group. The LTR retrotransposons are transcribed from promoters in the LTRs and encode proteins for packaging of their transcripts, the reverse transcription of the transcripts into cDNA, and integration of the cDNA back into the genome. BARE1 is translated as a single polyprotein and cleaved into the capsid protein (GAG), integrase (IN), and reverse transcriptase-RNaseH (RT-RH) by the integral aspartic proteinase (AP). The BARE retrotransposon family comprises more than 104 copies in the barley (Hordeum vulgare) genome. The element is bound by long terminal repeats (LTRs, 1829 bp) containing promoters required for replication, signals for RNA processing, and motifs necessary for the integration of the cDNA. Members of the BARE1 subfamily are transcribed, translated, and form virus-like particles. Several basic questions concerning transcription are explored in the thesis: BARE1 transcription control, promoter choice in different barley tissues, start and termination sites for BARE transcripts, and BARE1 transcript polyadenylation (I). Polyadenylation is an important step during mRNA maturation, and determines its stability and translatability among other characteristics. Our work has found a novel way used by BARE1 to make extra GAG protein, which is critical for VLP formation. The discovery that BARE1 uses one RNA population for protein synthesis and another RNA population for making cDNA has established the most important step of the BARE1 life cycle (III). The relationship between BARE1 and BARE2 has been investigated. Besides BARE, we have examined the retrotransposon Cassandra (II), which uses a very different transcriptional mechanism and a fully parasitic life cycle. In general, this work is focused on BARE1 promoter activity, transcriptional regulation including differential promoter usage and RNA pools, extra GAG protein production and VLP formation. The results of this study give new insights into transcription regulation of LTR retrotransposons.
Resumo:
Purpose: Weill-Marchesani syndrome (WMS) is a rare connective tissue disorder, characterized by short stature, micro-spherophakic lens, and stubby hands and feet (brachydactyly). WMS is caused by mutations in the FBN1, ADAMTS10, and LTBP2 genes. Mutations in the LTBP2 and ADAMTS17 genes cause a WMS-like syndrome, in which the affected individuals show major features of WMS but do not display brachydactyly and joint stiffness. The main purpose of our study was to determine the genetic cause of WMS in an Indian family. Methods: Whole exome sequencing (WES) was used to identify the genetic cause of WMS in the family. The cosegregation of the mutation was determined with Sanger sequencing. Reverse transcription (RT)-PCR analysis was used to assess the effect of a splice-site mutation on splicing of the ADAMTS17 transcript. Results: The WES analysis identified a homozygous novel splice-site mutation c.873+1G>T in a known WMS-like syndrome gene, ADAMTS17, in the family. RT-PCR analysis in the patient showed that exon 5 was skipped, which resulted in the deletion of 28 amino acids in the ADAMTS17 protein. Conclusions: The mutation in the WMS-like syndrome gene ADAMTS17 also causes WMS in an Indian family. The present study will be helpful in genetic diagnosis of this family and increases the number of mutations of this gene to six.
Resumo:
Object. Insulin-like growth factor binding proteins (IGEBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. Methods. The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. Results. IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. Conclusions. IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Resumo:
The immunoglobulin (Ig) joining (J) chain plays an important role in the formation of polymeric Igs and their transport into secretions. In the present study, the cDNA sequence of J chain has been cloned from the Chinese soft-shelled turtle (Pelodiscus sinensis) by reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE). The cDNA sequence is 2347 bp in length and contains an open reading frame of 480 bp encoding 160 aa including the signal sequence. The deduced amino acid sequence has a high degree of homology with that of an already reported turtle J chain (80.7%), and of chicken (71.3%). By using real-time quantitative RT-PCR analysis, a significant up-regulation of J-chain transcripts was observed in spleen, kidney and blood of turtles injected with inactivated Aeromonas hydrophila, indicating the immune role of J chain in response to bacterial infection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Using bioinformatics approach, the genome locus containing interleukin (IL)-22, IL-26, and interferon gamma (IFN-gamma) genes has been identified in the amphibian, Xenopus tropicalis. Like that in other vertebrates such as fish, birds, and mammals, the Xenopus IL-22, IL-26, and IFN-gamma are clustered in the same chromosome and the adjacent genes are conserved. The genomic structures of the Xenopus IL-22, IL-26, and IFN-gamma gene were identical to that of their mammalian counterparts. The Xenopus IL-22 and IL-26 genes contained five exons and four introns while the Xenopus IFN-gamma gene consisted of four exons and three introns. The Xenopus IL-22, IL-26, and IFN-gamma share 14.1-41.6%, 14.6-31.2%, and 23.7-36.5% identity to their counterparts in other species, respectively. Reverse-transcription polymerase chain reaction (PCR) and real-time quantitative PCR analyses revealed that the expression of IL-22, IL-26, and IFN-gamma genes was significantly upregulated after simulation with bacterial polyliposaccharide and/or synthetic double-stranded poly(I:C), suggesting these cytokines like those in other vertebrates play an important role in regulating immune response in Xenopus.
Resumo:
The ability to utilize the RNA interference (RNAi) machinery for silencing target-gene expression has created a lot of excitement in the research community. In the present study, we used a cytomegalovirus (CMV) promoter-driven DNA template approach to induce short hairpin RNA (shRNA) triggered RNAi to block exogenous Enhanced Green Fluorescent Protein (EGFP) and endogenous No Tail (NTL) gene expressions. We constructed three plasmids, pCMV-EGFP-CMV-shGFP-SV40, pCMV-EGFP-CMV-shNTL-SV40, and pCMV-EGFP-CMV-shScrambled-SV40, each containing a CMV promoter driving an EGFP reporter cDNA and DNA coding for one shRNA under the control of another CMV promoter. The three shRNA-generating plasmids and pCMV-EGFP control plasmid were introduced into zebrafish embryos by microinjection. Samples were collected at 48 h after injection. Results were evaluated by phenotype observation and real-time fluorescent quantitative reverse-transcription polymerase chain reaction (Q-PCR). The shGFP-generating plasmid significantly inhibited the EGFP expression viewed under fluorescent microscope and reduced by 70.05 +/- 1.26% of exogenous EGFP gene mRNA levels compared with controls by Q-PCR. The shRNA targeting endogenous NTL gene resulted in obvious NTL phenotype of 30 +/- 4% and decreased the level of their corresponding mRNAs up to 54.52 +/- 2.05% compared with nontargeting control shRNA. These data proved the feasibility of the CMV promoter-driven shRNA expression technique to be used to inhibit exogenous and endogenous gene expressions in zebrafish in vivo.
Resumo:
TNF receptor associated factor 1 (TRAF1) plays an important role in regulating the TNF signaling and protecting cells from apoptosis. In the present study, a TRAF1 gene has been cloned from grass carp (Ctenopharyngodon idella) by reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE). The full-length cDNA is 2235 bp, including a 250 bp 5' UTR (untranslated region), a 1659 bp open reading frame, and a 326 bp 3'UTR. The polyadenylation signal (AATAAA, AATAA) and one mRNA instability motif (AUUUA) were found followed by a poly (A) tail in the 3'UTR. No signal peptide or transmembrane region has been found in the putative amino acids of grass carp TRAF1 (gcTRAF1). The putative amino acids of gcTRAF1 share 72% identity with the homologue in zebrafish. It is characterized by a zinc finger at the N-terminus and a TRAF domain (contains one TRAF-C and one TRAF-N) at the C-terminus. The identity of the TRAF domain among all the TRAF1 homologues in vertebrates varies from 52% to 58%, while the identities of TRAF-C were almost the same as 70%. The recombinant gcTRAF1 has been constructed successfully and expressed in Escherichia coli by using pET-32a expression vector. The polyclonal antibody for rabbit has been successfully obtained. The expression of gcTRAF1 in different organs was examined by real-time quantitative PCR and Western blotting, respectively. It was widely distributed in heart, head kidney, thymus, brain, gill, liver, spleen, and trunk kidney. This is the first report of TRAF1 homologue molecule found in fish. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.
Resumo:
The cDNA of growth hormone receptor (GHR) was cloned from the liver of 2-year common carp (Cyprinus carpio L.) by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE). Its open reading frame (ORF) of 1806 nucleotides is translated into a putative peptide of 602 amino acids, including an extracellular ligand-binding domain of 244 amino acids (aa), a single transmembrane domain of 24 aa and an intracellular signal-transduction domain of 334 aa. Sequence analysis indicated that common carp GHR is highly homologous to goldfish (Carassius auratus) GHR at both gene and protein levels. Using a pair of gene-specific primers, a GHR fragment was amplified from the cDNA of 2-year common carp, a 224 bp product was identified in liver and a 321 bp product in other tissues. The sequencing of the products and the partial genomic DNA indicated that the difference in product size was the result of a 97 bp intron that alternatively spliced. In addition, the 321 bp fragment could be amplified from all the tissues of 4-month common carp including liver, demonstrating the occurrence of the alternative splicing of this intron during the development of common carp. Moreover, a semi-quantitative RT-PCR was performed to analyze the expression level of GHR in tissues of 2-year common carp and 4-month common carp. The result revealed that in the tissues of gill, thymus and brain, the expression level of GHR in 2-year common carp was significantly tower than that of 4-month common carp.
Resumo:
Lunatic fringe (Lfng), one modulator of Notch signaling, plays an essential part in demarcation of tissues boundaries during animal early development, especially somitogenesis. To characterize the promoter of zebrafish 1fng and generate somite-specific transgenic zebrafish, we isolated the upstream regulatory region of zebrafish 1fng by blast search at the Ensembl genome database (http://www. ensembl.org) and analyzed the promoter activity using green fluorescent protein (GFP) as a reporter. Promoter activity assay in zebrafish shows that the 0.2-kb fragment containing GC-box, CAAT-box, and TATA-box can direct tissue-specific GFP expression, while the 0.4-kb and 1.2-kb fragments with further upstream sequence included drive GFP expression more efficiently. We produced 1fngEGFP-transgenic founders showing somite-specific expression of GFP and consequently generated a hemizygous 1fngEGFP-transgenic line. The eggs from 1fngEGFP-transgenic female zebrafish show strong GFP expression, which is consistent to the reverse-transcription polymerase chain reaction PCR (RT-PCR) detection of 1fng transcripts in the fertilized eggs. This reveals that zebrafish 1fng is a maternal factor existing in matured eggs, suggesting that fish somitogcnesis may be influenced by maternal factors.
Resumo:
Double-stranded RNA (dsRNA) has been shown to be a useful tool for silencing genes in zebrafish (Danio rerio), while the blocking specificity of dsRNA is still of major concern for application. It was reported that siRNA (small interfering RNA) prepared by endoribonuclease digestion (esiRNA) could efficiently silence endogenous gene expression in mammalian embryos. To test whether esiRNA could work in zebrafish, we utilized Escherichia coli RNaseIII to digest dsRNA of zebrafish no tail (ntl), a mesoderm determinant in zebrafish and found that esi-ntl could lead to developmental defects, however, the effective dose was so close to the toxic dose that esi-ntl often led to non-specific developmental defects. Consequently, we utilized SP6 RNA polymerase to produce si-ntl, siRNA designed against ntl, by in vitro transcription. By injecting in vitro synthesized si-ntl into zebrafish zygotes, we obtained specific phenocopies of reported mutants of ntl. We achieved up to a 59%no tail phenotype when the injection concentration was as high as 4 mu g/mu L. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization analysis showed that si-ntl could largely and specifically reduce mRNA levels of the ntl gene. As a result, our data indicate that esiRNA is unable to cause specific developmental defects in zebrafish, while siRNA should be an alternative for downregulation of specific gene expression in zebrafish in cases where RNAi techniques are applied to zebrafish reverse genetics.