963 resultados para reverse phase protein array
Resumo:
Blue rayon (BR) in combination with the Salmonella/microsome assay was used to evaluate the mutagenicity of fish bile samples. Specimens of Mugil curema from two sites were collected over a 1-year period. Piacaguera channel contains high concentrations of total polycyclic aromatic hydrocarbons (PAHs) and other contaminants, while Bertioga channel was considered the reference sites in this study. Bile was extracted with BR and tested with TA98, TA100, and YG1041 strains with and without S9 in dose response experiments. PAH metabolite equivalents were analyzed using reverse-phase high performance liquid chromatography /fluorescence. Higher mutagenic responses were observed for the contaminated site; YG1041 with S9 was the most sensitive strain/condition. Mutagenicity ranged from 3,900 to 14,000 rev./mg at the contaminated site and from 1,200 to 2,500 rev./mg of BR at the reference site. The responses of YG1041 were much higher in comparison with the TA98 indicating the presence of polycyclic compounds from the aromatic amine class that cause frameshift mutation. TA100 showed a positive mutagenic response that was enhanced following S9 treatment at both sites suggesting the presence of polycyclic compounds that require metabolic activation. benzo(a)pyrene, naphthalene, and phenanthrene metabolite equivalents were also higher in the bile of fish collected at the contaminated site. It was not possible to correlate the PAH metabolite quantities with the mutagenic potency. Thus, a combination of the Salmonella/microsome assay with YG1041 with S9 from BR bile extract seems to be an acceptable biomarker for monitoring the exposure of fish to mutagenic polycyclic compounds. Environ. Mal. Mutagen. 51:173-179, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Mechanical ventilation is the major cause of iatrogenic lung damage in intensive care units. Although inflammation is known to be involved in ventilator-induced lung injury (VILI), several aspects of this process are still unknown. Pentraxin 3 (PTX3) is an acute phase protein with important regulatory functions in inflammation which has been found elevated in patients with acute respiratory distress syndrome. This study aimed at investigating the direct effect of PTX3 production in the pathogenesis of VILI. Genetically modified mice deficient and that over express murine Ptx3 gene were subjected to high tidal volume ventilation (V-T = 45 mL/kg, PEEPzero). Morphological changes and time required for 50% increase in respiratory system elastance were evaluated. Gene expression profile in the lungs was also investigated in earlier times in Ptx3-overexpressing mice. Ptx3 knockout and wild-type mice developed same lung injury degree in similar times (156 +/- 42 min and 148 +/- 41 min, respectively: p = 0.8173). However, Ptx3 overexpression led to a faster development of VILI in Ptx3-overexpressing mice (77 +/- 29 min vs 118 +/- 41 min, p = 0.0225) which also displayed a faster kinetics of Il1b expression and elevated Ptx3, Cxcl1 and Ccl2 transcripts levels in comparison with wild-type mice assessed by quantitative real-time polymerase chain reaction. Ptx3 deficiency did not impacted the time for VILI induced by high tidal volume ventilation but Ptx3-overexpression increased inflammatory response and reflected in a faster VILI development. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: Leishmania (Viannia) shawi parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from L. (V.) shawi promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained. Methods: F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 mu g of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated. Results: The F1 fraction induced a high degree of protection associated with an increase in IFN-gamma, a decrease in IL-4, increased cell proliferation and activation of CD8(+)T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4(+) central memory T lymphocytes and activation of both CD4+ and CD8(+) T cells. In addition, F1-immunized groups showed an increase in IgG2a levels. Conclusions: The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.
Resumo:
BACKGROUND/OBJECTIVES: Serum amyloid A (SAA) is an acute-phase protein that has been recently correlated with obesity and insulin resistance. Therefore, we first examined whether human recombinant SAA (rSAA) could affect the proliferation, differentiation and metabolism of 3T3-L1 preadipocytes. DESIGN: Preadipocytes were treated with rSAA and analyzed for changes in viability and [H-3-methyl]-thymidine incorporation as well as cell cycle perturbations using flow cytometry analysis. The mRNA expression profiles of adipogenic factors during the differentiation protocol were also analyzed using real-time PCR. After differentiation, 2-deoxy-[1,2-H-3]-glucose uptake and glycerol release were evaluated. RESULTS: rSAA treatment caused a 2.6-fold increase in cell proliferation, which was consistent with the results from flow cytometry showing that rSAA treatment augmented the percentage of cells in the S phase (60.9 +/- 0.54%) compared with the control cells (39.8 +/- 2.2%, ***P<0.001). The rSAA-induced cell proliferation was mediated by the ERK1/2 signaling pathway, which was assessed by pretreatment with the inhibitor PD98059. However, the exposure of 3T3-L1 cells to rSAA during the differentiation process resulted in attenuated adipogenesis and decreased expression of adipogenesis-related factors. During the first 72 h of differentiation, rSAA inhibited the differentiation process by altering the mRNA expression kinetics of adipogenic transcription factors and proteins, such as PPAR gamma 2 (peroxisome proliferator-activated receptor gamma 2), C/EBP beta (CCAAT/enhancer-binding protein beta) and GLUT4. rSAA prevented the intracellular accumulation of lipids and, in fully differentiated cells, increased lipolysis and prevented 2-deoxy-[1,2-H-3]-glucose uptake, which favors insulin resistance. Additionally, rSAA stimulated the secretion of proinflammatory cytokines interleukin 6 and tumor necrosis factor alpha, and upregulated SAA3 mRNA expression during adipogenesis. CONCLUSIONS: We showed that rSAA enhanced proliferation and inhibited differentiation in 3T3-L1 preadipocytes and altered insulin sensitivity in differentiated cells. These results highlight the complex role of SAA in the adipogenic process and support a direct link between obesity and its co-morbidities such as type II diabetes.
Resumo:
Red cell haemoglobin is the fundamental oxygen-transporting molecule in blood, but also a potentially tissue-damaging compound owing to its highly reactive haem groups. During intravascular haemolysis, such as in malaria and haemoglobinopathies(1), haemoglobin is released into the plasma, where it is captured by the protective acute-phase protein haptoglobin. This leads to formation of the haptoglobin-haemoglobin complex, which represents a virtually irreversible non-covalent protein-protein interaction(2). Here we present the crystal structure of the dimeric porcine haptoglobin-haemoglobin complex determined at 2.9 angstrom resolution. This structure reveals that haptoglobin molecules dimerize through an unexpected beta-strand swap between two complement control protein (CCP) domains, defining a new fusion CCP domain structure. The haptoglobin serine protease domain forms extensive interactions with both the alpha- and beta-subunits of haemoglobin, explaining the tight binding between haptoglobin and haemoglobin. The haemoglobin-interacting region in the alpha beta dimer is highly overlapping with the interface between the two alpha beta dimers that constitute the native haemoglobin tetramer. Several haemoglobin residues prone to oxidative modification after exposure to haem-induced reactive oxygen species are buried in the haptoglobin-haemoglobin interface, thus showing a direct protective role of haptoglobin. The haptoglobin loop previously shown to be essential for binding of haptoglobin-haemoglobin to the macrophage scavenger receptor CD163 (ref. 3) protrudes from the surface of the distal end of the complex, adjacent to the associated haemoglobin alpha-subunit. Small-angle X-ray scattering measurements of human haptoglobin-haemoglobin bound to the ligand-binding fragment of CD163 confirm receptor binding in this area, and show that the rigid dimeric complex can bind two receptors. Such receptor cross-linkage may facilitate scavenging and explain the increased functional affinity of multimeric haptoglobin-haemoglobin for CD163 (ref. 4).
Resumo:
The mycotoxin aflatoxin B1 (AFB1) is a carcinogenic food contaminant which is metabolically activated by epoxydation. The metabolism of mycotoxins via the mercapturate metabolic pathway was shown, in general, to lead to their detoxication. Mercapturic acids thus formed (S-substitued-N-acetyl-L-cysteines) may be accumulated in the kidney and either excreted in the urine or desacetylated by Acylase 1 (ACY1) to yield cysteine S-conjugates. To be toxic, the N-acetyl-L-cysteine-S-conjugates first have to undergo deacetylation by ACY 1. The specificity and rate of mercapturic acid deacetylation may determine the toxicity, however the exact deacetylation processes involved are not well known. The aim of this study was to investigate the role of ACY1 in the toxicity of some bioactive epoxides from Aflatoxin B1. We characterized the kinetic parameters of porcine kidney and human recombinant aminoacylase-1 towards some aromatic and aliphatic-derived mercapturates analogue of mycotoxin mercapturic acids and 3,4-epoxyprecocene, a bioactive epoxide derivated from aflatoxin. The deacetylation of mercapturated substrates was followed both by reverse phase HPLC and by TNBS method. Catalytic activity was discussed in a structure function relationship. Ours results indicate for the first time that aminoacylase-1 could play an important role in deacetylating mercapturate metabolites of aflatoxin analogues and this process may be in relation with their cyto- and nephrotoxicity in human. (C) 2012 Published by Elsevier Masson SAS.
Resumo:
Abstract Background Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is a skin cancer therapy that still has limitations due to the low penetration of this drug into the skin. We have proposed in this work a delivery system for 5-ALA based on liposomes having lipid composition similar to the mammalian stratum corneum (SCLLs) in order to optimize its skin delivery in Photodynamic Therapy (PDT) of skin cancers. Methods SCLLs were obtained by reverse phase evaporation technique and size distribution of the vesicles was determinated by photon correlation spectroscopy. In vitro permeation profile was characterized using hairless mouse skin mounted in modified Franz diffusion cell. Results Size exclusion chromatography on gel filtration confirmed vesicle formation. SCLLs obtained by presented a degree of encapsulation of 5-ALA around 5.7%. A distribution of vesicle size centering at around 500 nm and 400 nm respectively for SCLLs and SCLLs containing 5-ALA was found. In vitro 5-ALA permeation study showed that SCLLs preparations presented higher skin retention significantly (p < 0.05) on the epidermis without SC + dermis, with a decreasing of skin permeation compared to aqueous solution. Conclusions The in vitro delivery performance provided by SCLLs lead to consider this systems adequate for the 5-ALA-PDT of skin cancer, since SCLLs have delivered 5-ALA to the target skin layers (viable epidermis + dermis) to be treated by topical PDT of skin cancer.
Resumo:
AD is the most common age related neurodegenerative disease in the industrialized world. Clinically AD is defined as a progressing decline of cognitive functions. Neuropathologically, AD is characterized by the aggregation of b-amyloid (Ab) peptide in the form of extracellular senile plaques, and hyperphosphorlylated tau protein in the form of intracellular neurofibrillary tangles. These neuropathological hallmarks are often accompanied by abundant microvascular damage and pronounced inflammation of the affected brain regions. In this thesis we investigated several aspects of AD focusing on the genetic aspect. We confirmed that Alpha 1 antichymotrypsin (ACT), an acute phase protein, was associated to AD subjects, being plasma levels higher in AD cases than controls. In addition, in a GWA study we demonstrated that two different gene, Clusterin and CR1 were strongly associated to AD. A single gene association not explain such a complex disease like AD. The goal should be to created a network of genetic, phenotypic and clinical data associated to AD. We used a new algorithm, the ANNs, aimed to map variables and search for connectivity among variables. We found specific variables associated to AD like cholesterol levels, the presence of variation in HMGCR enzyme and the age. Other factors such as the BMI, the amount of HDL and blood folate levels were also associated with AD. Pathogen infections, above all viral infections, have been previously associated to AD. The hypothesis suggests that virus and in particular herpes virus could enter the brain when an individual becomes older, perhaps because of a decline in the immune system. Our new hypothesis is that the presence of SNPs in our GWA gene study results in a genetic signature that might affect individual brain susceptibility to infection by herpes virus family during aging.
Resumo:
Eine Voraussetzung für die Entwicklung neuer immunmodulatorischer Therapieverfahren ist die Kenntnis immunogener Tumorantigene, die von tumorreaktiven T-Zellen erkannt werden. In der vorliegenden Arbeit wurden tumorreaktive CD8+ zytotoxische T-Lymphozyten (CTL, cytotoxic T-lymphocytes) aus dem Blut eines HLA (human leukocyte antigen)-kompatiblen Fremdspenders generiert. Methodisch wurden hierzu CD8-selektionierte periphere Blutlymphozyten repetitiv mit der klarzelligen Nierenzellkarzinomlinie MZ1851-RCC (RCC, renal cell carcinoma) in einer allogenen gemischten Lymphozyten-Tumorzell Kultur (MLTC, mixed lymphocyte tumor cell culture) stimuliert. Aus den Responderlymphozyten wurden mit Hilfe des Grenzverdünnungsverfahrens klonale zytotoxische T-Zellen generiert und expandiert. Die CTL-Klone wurden anschließend phänotypisch mittels Durchflußzytometrie sowie funktionell mittels HLA-Antikörper-Blockadeexperimenten und Kreuzreaktivitätstests detailliert charakterisiert. Dabei konnte gezeigt werden, daß aus dem Blut eines allogenen gesunden Spenders CD8+ T-Zellen isoliert werden können, welche Reaktivität gegen Nierenzellkarzinome (NZK) aufweisen und über verschiedene HLA-Klasse-I-Allele restringiert sind. Die von den einzelnen CTL-Klonen erkannten Zielstrukturen zeigten entweder ubiquitäre (z.B. HLA-Cw*0704-reaktiver CTL-Klon E77) oder eine tumorspezifische (z.B. HLA-B*0702-restringierter CTL-Klon A4) Gewebeexpression. Zur Identifizierung der natürlich prozessierten Peptidliganden wurden die HLA-B/C-Allele unter Verwendung des monoklonalen Antikörpers B123.2 aus einem zuvor hergestellten Detergenslysat der Nierenzellkarzinomlinie MZ1851-RCC immunchromatographisch aufgereinigt. Aus den so isolierten HLA-Peptid-Komplexen wurden die tumorassoziierten Peptidliganden nach Säureeluation und Filtration abgespalten und über eine „reverse phase“-HPLC (high performance liquid chromatography) fraktioniert. Die Überprüfung der einzelnen HPLC-Fraktionen auf Bioaktivität erfolgte mit den korrespondierenden CTL-Klonen in 51Cr-Zytotoxizitätstests. Dabei wurde eine HPLC-Fraktion identifiziert, die die lytische Funktion des HLA-B*0702-restringierten CTL-Klons A4 auslösen konnte. Die bioaktive HPLC-Fraktion wurde dazu durch eine zweite (second dimension) Kapillar-Flüssigkeitschromatographie (Cap-LC, capillar liquid chromatography) in Subfraktionen geringerer Komplexität aufgetrennt und die darin enthaltenen Peptidepitope durch das MALDI-TOF/TOF (matrix assisted laser desorption/ionization- time of flight/time of flight)-Analyseverfahren sequenziert. Innerhalb dieser HPLC-Fraktion wurden eine Vielzahl von HLA-B/C-assoziierten Peptidliganden erfolgreich sequenziert, was die Effektivität dieser Verfahrenstechnik zur Identifizierung natürlich prozessierter HLA-Klasse-I-bindender Peptide unter Beweis stellt. Leider war es mit dieser Methode bisher nicht möglich, das von CTL-Klon A4 detektierte Peptidepitop zu sequenzieren. Dies liegt möglicherweise in der unzureichenden Konzentration des Peptidepitops in der bioaktiven HPLC-Fraktion begründet. In Folgearbeiten soll nun mit erhöhter Probenmenge beziehungsweise verbesserter Analytik der erneute Versuch unternommen werden, das Zielantigen des CTL-Klons A4 zu identifizieren. Die Kenntnis von Antigenen, die tumorspezifisch exprimiert und von CD8+ CTL aus gesunden Spendern erkannt werden, eröffnet neue therapeutische Möglichkeiten, das spezifische Immunsystem des Stammzellspenders nach allogener Blutstammzelltransplantation gezielt zur Steigerung von Tumorabstoßungsreaktionen (z.B. durch Vakzinierung oder adoptivem T-Zelltransfer) zu nutzen.
Resumo:
Meprin and , zinc metalloproteinases, play significant roles in inflammation, including inflammatory bowel disease (IBD), possibly by activating cytokines, like interleukin 1 , interleukin 18, or tumor growth factor . Although a number of potential activators for meprins are known, no endogenous inhibitors have been identified. In this work, we analyzed the inhibitory potential of human plasma and identified bovine fetuin-A as an endogenous meprin inhibitor with a K(i) (inhibition constant) of 4.2 × 10(-5) M for meprin and a K(i) of 1.1 × 10(-6) M meprin . This correlated with data obtained for a fetuin-A homologue from carp (nephrosin inhibitor) that revealed a potent meprin and inhibition (residual activities of 27 and 22%, respectively) at a carp fetuin concentration of 1.5 × 10(-6) M. Human fetuin-A is a negative acute phase protein involved in inflammatory diseases, thus being a potential physiological regulator of meprin activity. We report kinetic studies of fetuin-A with the proteolytic enzymes astacin, LAST, LAST_MAM, trypsin, and chymotrypsin, indeed demonstrating that fetuin-A is a broad-range protease inhibitor. Fetuin-A inhibition of meprin activity was 40 times weaker than that of meprin activity. Therefore, we tested cystatin C, a protein structurally closely related to fetuin-A. Indeed, cystatin C was an inhibitor for human meprin (K(i) = 8.5 × 10(-6) M) but, interestingly, not for meprin . Thus, the identification of fetuin-A and cystatin C as endogenous proteolytic regulators of meprin activity broadens our understanding of the proteolytic network in plasma.
Resumo:
Case report of a 66-year-old woman with episodes of amaurosis fugax and hemicranic headache with otherwise normal ophthalmologic and neurological examinations and normal imaging. While ESR was in the normal range for patient's age, acute phase proteins (C-reactive protein and fibrinogen) were elevated. Giant cell arteritis was proved by temporal artery biopsy. Giant cell arteritis should be considered as an important differential diagnosis of amaurosis fugax even in patients with normal ESR. Acute phase protein testing can give relevant diagnostic information.
Resumo:
The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei.
Resumo:
AIMS High-density lipoproteins (HDLs) are considered as anti-atherogenic. Recent experimental findings suggest that their biological properties can be modified in certain clinical conditions by accumulation of serum amyloid A (SAA). The effect of SAA on the association between HDL-cholesterol (HDL-C) and cardiovascular outcome remains unknown. METHODS AND RESULTS We examined the association of SAA and HDL-C with mortality in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, which included 3310 patients undergoing coronary angiography. To validate our findings, we analysed 1255 participants of the German Diabetes and Dialysis study (4D) and 4027 participants of the Cooperative Health Research in the Region of Augsburg (KORA) S4 study. In LURIC, SAA concentrations predicted all-cause and cardiovascular mortality. In patients with low SAA, higher HDL-C was associated with lower all-cause and cardiovascular mortality. In contrast, in patients with high SAA, higher HDL-C was associated with increased all-cause and cardiovascular mortality, indicating that SAA indeed modifies the beneficial properties of HDL. We complemented these clinical observations by in vitro experiments, in which SAA impaired vascular functions of HDL. We further derived a formula for the simple calculation of the amount of biologically 'effective' HDL-C based on measured HDL-C and SAA from the LURIC study. In 4D and KORA S4 studies, we found that measured HDL-C was not associated with clinical outcomes, whereas calculated 'effective' HDL-C significantly predicted better outcome. CONCLUSION The acute-phase protein SAA modifies the biological effects of HDL-C in several clinical conditions. The concomitant measurement of SAA is a simple, useful, and clinically applicable surrogate for the vascular functionality of HDL.
Resumo:
Orosomucoid (ORM) or alpha-1 acid glycoprotein is an acute phase protein of human plasma whose function is suggested to be the competitive inhibition of cellular recognition by infective agents. Isoelectric focusing (IEF) and immunoblotting have been combined and optimum conditions have been determined for reliable classification of different ORM phenotypes. Addition of 6 M urea in an IEF gel revealed additional microheterogeneity in the ORM system which has not been previously reported. 1,667 individuals from different native ethnic groups of North and South America, Africa and New Guinea have been screened to determine the distribution of ORM alleles. Two common alleles, ORM1*1 and ORM1*2 have been observed and their frequencies were determined. Genetically independent variation consistent with expression of the ORM2 locus was observed in American and African blacks but was not observed in other sampled populations. The population allele frequencies for this new locus were 0.958, 0.025, 0.006, 0.011, for alleles ORM2*1, ORM2*2, ORM2*3, ORM2*4, respectively. Family studies confirm the autosomal codominant inheritance of the phenotypes observed at both ORM loci. ^
Resumo:
Paracrine motogenic factors, including motility cytokines and extracellular matrix molecules secreted by normal cells, can stimulate metastatic cell invasion. For extracellular matrix molecules, both the intact molecules and the degradative products may exhibit these activities, which in some cases are not shared by the intact molecules. We found that human peritumoral and lung fibroblasts secrete motility-stimulating activity for several recently established human sarcoma cell strains. The motility of lung metastasis-derived human SYN-1 sarcoma cells was preferentially stimulated by human lung and peritumoral fibroblast motility-stimulating factors (FMSFs). FMSFs were nondialyzable, susceptible to trypsin, and sensitive to dithiothreitol. Cycloheximide inhibited accumulation of FMSF activity in conditioned medium; however, addition of cycloheximide to the migration assay did not significantly affect motility-stimulating activity. Purified hepatocyte growth factor/scatter factor (HGF/SF), rabbit anti-hHGF, and RT-PCR analysis of peritumoral and lung fibroblast HGF/SF mRNA expression indicated that FMSF activity was unrelated to HGF/SF. Partial purification of FMSF by gel exclusion chromatography revealed several peaks of activity, suggesting multiple FMSF molecules or complexes.^ We purified the fibroblast motility-stimulating factor from human lung fibroblast-conditioned medium to apparent homogeneity by sequential heparin affinity chromatography and DEAE anion exchange chromatography. Lysylendopeptidase C digestion of FMSF and sequencing of peptides purified by reverse phase HPLC after digestion identified it as an N-terminal fragment of human fibronectin. Purified FMSF stimulated predominantly chemotaxis but chemokinesis as well of SYN-1 sarcoma cells and was chemotactic for a variety of human sarcoma cells, including fibrosarcoma, leiomyosarcoma, liposarcoma, synovial sarcoma and neurofibrosarcoma cells. The motility-stimulating activity present in HLF-CM was completely eliminated by either neutralization or immunodepletion with a rabbit anti-human-fibronectin antibody, thus further confirming that the fibronectin fragment was the FMSF responsible for the motility stimulation of human soft tissue sarcoma cells. Since human soft tissue sarcomas have a distinctive hematogenous metastatic pattern (predominantly lung), FMSF may play a role in this process. ^