933 resultados para reproductive seasonality
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The seasonal cycles of coastal wind stress, adjusted sea level height (ASL), shelf currents and water temperatures off the west coast of North America (35°N to 48°N) were estimated by fitting annual and semiannual harmonics to data from 1981-1983. Longer records of monthly ASL indicate that these two harmonics adequately represent the long-term monthly average seasonal cycle, and that the current measurement period is long enough to define the seasonal cycles, with relatively small errors in magnitude and phase.
Resumo:
Gonadal morphology and reproductive biology of the Black Anglerfish (Lophius budegassa) were studied by examining 4410 specimens collected between June 2007 and December 2010 in the northwestern Mediterranean Sea. Ovaries and testes presented traits common among fishes of the order Lophiiformes. Spawning occurred between November and March. Size at first maturity (L50) was 33.4 cm in total length (TL) for males and 48.2 cm TL for females. Black Anglerfish is a total spawner with group-synchronous oocyte development and determinate fecundity. Fecundity values ranged from 87,569 to 398,986 oocytes, and mean potential fecundity was estimated at 78,929 (standard error of the mean [SE] 13,648) oocytes per kilogram of mature female. This study provides the first description of the presence of 2–3 eggs sharing the same chamber and a semicystic type of spermatogenesis for Black Anglerfish. This new information allows for a better understanding of Black Anglerfish reproduction—knowledge that will be useful for the assessment and management of this species.
Resumo:
The genus Sebastes consists of over 100 fish species, all of which are viviparous and long-lived. Previous studies have presented schemes on the reproductive biology of a single targeted species of the genus Sebastes, but all appear to possess a similar reproductive biology as evidenced by this and other studies. This atlas stages major events during spermatogenesis, oogenesis, and embryogenesis, including atresia, in six species of Sebastes (S. alutus, S. elongatus, S. helvomaculatus, S. polyspinis, S. proriger, and S. zacentrus). Our study suggests that the male reproductive cycle of Sebastes is characterized by 11 phases of testicular development, with 10 stages of sperm development and 1 stage of spermatozoa atresia. Ovarian development was divided into 12 phases, with 10 stages of oocyte development, 1 stage of embryonic development, and 1 stage of oocyte atresia. Embryonic development up to parturition was divided into 33 stages following the research of Yamada and Kusakari (1991). Reproductive development of all six species examined followed the developmental classifications listed above which may apply to all species of Sebastes regardless of the number of broods produced annually. Multiple brooders vary in that not all ova are fertilized and progress to embryos; a proportion of ova are arrested at the pre-vitellogenic stage. Reproductive stage examples shown in this atlas use S. elongates for spermatic development, S. proriger for oocyte development, and S. alutus for embryological development, because opportunistic sampling only permitted complete analysis of each respective developmental phase for those species. The results of this study and the proposed reproductive phases complement the recommended scheme submitted by Brown-Peterson et al. (2011), who call for a standardization of terminology for describing reproductive development of fishes.
Resumo:
We describe reproductive dynamics of female spotted seatrout (Cynoscion nebulosus) in South Carolina (SC). Batch fecundity (BF), spawning frequency (SF), relative fecundity (RF), and annual fecundity (AF) for age classes 1−3 were estimated during the spawning seasons of 1998, 1999, and 2000. Based on histological evidence, spawning of spotted seatrout in SC was determined to take place from late April through early September. Size at first maturity was 248 mm total length (TL); 50% and 100% maturity occurred at 268 mm and 301 mm TL, respectively. Batch fecundity estimates from counts of oocytes in final maturation varied significantly among year classes. One-year-old spotted seatrout spawned an average of 145,452 oocytes per batch, whereas fish aged 2 and 3 had a mean BF of 291,123 and 529,976 oocytes, respectively. We determined monthly SF from the inverse of the proportion of ovaries with postovulatory follicles (POF) less than 24 hours old among mature and developing females. Overall, spotted seatrout spawned every 4.4 days, an average of 28 times during the season. A chronology of POF atresia for water temperature >25°C is presented. Length, weight (ovary-free), and age explained 67%, 65%, and 58% of the variability in BF, respectively. Neither RF (number of oocytes/g ovary-free weight) nor oocyte diameter varied significantly with age. However, RF was significantly greater and oocyte diameter was smaller at the end of the spawning season. Annual fecundity estimates were approximately 3.2, 9.5, and 17.6 million oocytes for each age class, respectively. Spotted seatrout ages 1−3 contributed an average of 29%, 39%, and 21% to the overall reproductive effort according to the relative abundance of each age class. Ages 4 and 5 contributed 7% and 4%, respectively, according to predicted AF values.
Resumo:
Portunus pelagicus was collected at regular intervals from two marine embayments and two estuaries on the lower west coast of Australia and from a large embayment located approximately 800 km farther north. The samples were used to obtain data on the reproductive biology of this species in three very different environments. Unlike females, the males show a loosening of the attachment of the abdominal flap to the cephalothorax at a prepubertal rather than a pubertal molt. Males become gonadally mature (spermatophores and seminal fluid present in the medial region of the vas deferentia) at a very similar carapace width (CW) to that at which they achieve morphometric maturity, as reflected by a change in the relative size of the largest cheliped. Logistic curves, derived from the prevalence of mature male P. pelagicus, generally had wider confidence limits with morphometric than with gonadal data. This presumably reflects the fact that the morphometric (allometric) method of classifying a male P. pelagicus as mature employs probabilities and is thus indirect, whereas gonadal structure allows a mature male to be readily identified. However, the very close correspondence between the CW50’s derived for P. pelagicus by the two methods implies that either method can be used for management purposes. Portunus pelagicus attained maturity at a significantly greater size in the large embayment than in the four more southern bodies of water, where water temperatures were lower and the densities of crabs and fishing pressure were greater. As a result of the emigration of mature female P. pelagicus from estuaries, the CW50’s derived by using the prevalence of mature females in estuaries represent overestimates for those populations as a whole. Estimates of the number of egg batches produced in a spawning season ranged from one in small crabs to three in large crabs. These data, together with the batch fecundities of different size crabs, indicate that the estimated number of eggs produced by P. pelagicus during the spawning season ranges from about 78,000 in small crabs (CW=80 mm) to about 1,000,000 in large crabs (CW=180 mm).
Resumo:
Samples of the commercially and recreationally important West Australian dhufish (Glaucosoma hebraicum) were obtained from the lower west coast of Australia by a variety of methods. Fish <300 mm TL were caught over flat, hard substrata and low-lying limestone reefs, whereas larger fish were caught over larger limestone and coral reef formations. Maximum total lengths, weights, and ages were 981 mm, 15.3 kg, and 39 years, respectively, for females and 1120 mm, 23.2 kg, and 41 years, respectively, for males. The von Bertalanffy growth curves for females and males were significantly different. The values for L∞, k, and t0 in the von Bertalanffy growth equations were 929 mm, 0.111/year, and –0.141 years, respectively, for females, and 1025 mm, 0.111/year, and –0.052 years, respectively, for males. Preliminary estimates of total mortality indicated that G. hebraicum is now subjected to a level of fishing pressure that must be of concern to fishery managers. Glaucosoma hebraicum, which spawns between November and April and predominantly between December and March, breeds at a wide range of depths and is a multiple spawner. The L50’s for females and males at first maturity, i.e. 301 and 320 mm, respectively, were attained by about the end of the third year of life and are well below the minimum legal length (MLL) of 500 mm. Because females and males did not reach the MLL until the end of their seventh and sixth years of life, respectively, they would have had, on average, the opportunity of spawning during four and three spawning seasons, respectively, before they reached the MLL. However, because G. hebraicum caught in water depths >40 m typically die upon release, a MLL is of limited use for conserving this species. Alternative approaches, such as restricting fishing activity in highly fished areas, reducing daily bag limits for recreational fishermen, introducing quotas or revising specific details of certain commercial hand-line licences (or doing both) are more likely to provide effective conservation measures.
Resumo:
Reproductive organs from 393 male and 382 female porbeagles (Lamna nasus), caught in the western North Atlantic Ocean, were examined to determine size at maturity and reproductive cycle. Males ranged in size from 86 to 246 cm fork length (FL) and females ranged from 94 to 288 cm FL. Maturity in males was best described by an inflection in the relationship of clasper length to fork length when combined with clasper calcification. Males matured between 162 and 185 cm FL and 50% were mature at 174 cm FL. In females, all reproductive organ measurements related to body length showed a strong inflection around the size of maturity. Females matured between 210 and 230 cm FL and 50% were mature at 218 cm FL. After a protracted fall mating period (September–November), females give birth to an average of 4.0 young in spring (April−June). As in other lamnids, young are nourished through oophagy. Evidence from this study indicated a one-year reproductive cycle and gestation period lasting 8–9 months.