911 resultados para replication slippage
Resumo:
In addition to DNA polymerase complexes, DNA replication requires the coordinate action of a series of proteins, including regulators Cdc28/Clb and Dbf4/Cdc7 kinases, Orcs, Mcms, Cdc6, Cdc45, and Dpb11. Of these, Dpb11, an essential BRCT repeat protein, has remained particularly enigmatic. The Schizosaccharomyces pombe homolog of DPB11, cut5, has been implicated in the DNA replication checkpoint as has the POL2 gene with which DPB11 genetically interacts. Here we describe a gene, DRC1, isolated as a dosage suppressor of dpb11–1. DRC1 is an essential cell cycle-regulated gene required for DNA replication. We show that both Dpb11 and Drc1 are required for the S-phase checkpoint, including the proper activation of the Rad53 kinase in response to DNA damage and replication blocks. Dpb11 is the second BRCT-repeat protein shown to control Rad53 function, possibly indicating a general function for this class of proteins. DRC1 and DPB11 show synthetic lethality and reciprocal dosage suppression. The Drc1 and Dpb11 proteins physically associate and function together to coordinate DNA replication and the cell cycle.
Resumo:
The cellular form of the Prion protein (PrPC) is necessary for prion replication in mice. To determine whether it is also sufficient, we expressed PrP under the control of various cell- or tissue-specific regulatory elements in PrP knockout mice. The interferon regulatory factor-1 promoter/Eμ enhancer led to high PrP levels in the spleen and low PrP levels in the brain. Following i.p. scrapie inoculation, high prion titers were found in the spleen but not in the brain at 2 weeks and 6 months, showing that the lymphoreticular system by itself is competent to replicate prions. PrP expression directed by the Lck promoter resulted in high PrP levels on T lymphocytes only but, surprisingly, did not allow prion replication in the thymus, spleen, or brain following i.p. inoculation. A third transgenic line, which expressed PrP in the liver under the control of the albumin promoter/enhancer—albeit at low levels—also failed to replicate prions. These results show that expression of PrP alone is not sufficient to sustain prion replication and suggest that additional components are needed.
Resumo:
Defined model systems consisting of physiologically spaced arrays of H3/H4 tetramer⋅5S rDNA complexes have been assembled in vitro from pure components. Analytical hydrodynamic and electrophoretic studies have revealed that the structural features of H3/H4 tetramer arrays closely resemble those of naked DNA. The reptation in agarose gels of H3/H4 tetramer arrays is essentially indistinguishable from naked DNA, the gel-free mobility of H3/H4 tetramer arrays relative to naked DNA is reduced by only 6% compared with 20% for nucleosomal arrays, and H3/H4 tetramer arrays are incapable of folding under ionic conditions where nucleosomal arrays are extensively folded. We further show that the cognate binding sites for transcription factor TFIIIA are significantly more accessible when the rDNA is complexed with H3/H4 tetramers than with histone octamers. These results suggest that the processes of DNA replication and transcription have evolved to exploit the unique structural properties of H3/H4 tetramer arrays.
Resumo:
This study aimed to exploit bacterial artificial chromosomes (BAC) as large antigen-capacity DNA vaccines (BAC-VAC) against complex pathogens, such as herpes simplex virus 1 (HSV-1). The 152-kbp HSV-1 genome recently has been cloned as an F-plasmid-based BAC in Escherichia coli (fHSV), which can efficiently produce infectious virus progeny upon transfection into mammalian cells. A safe modification of fHSV, fHSVΔpac, does not give rise to progeny virus because the signals necessary to package DNA into virions have been excluded. However, in mammalian cells fHSVΔpac DNA can still replicate, express the HSV-1 genes, cause cytotoxic effects, and produce virus-like particles. Because these functions mimic the lytic cycle of the HSV-1 infection, fHSVΔpac was expected to stimulate the immune system as efficiently as a modified live virus vaccine. To test this hypothesis, mice were immunized with fHSVΔpac DNA applied intradermally by gold-particle bombardment, and the immune responses were compared with those induced by infection with disabled infectious single cycle HSV-1. Immunization with either fHSVΔpac or disabled infectious single cycle HSV-1 induced the priming of HSV-1-specific cytotoxic T cells and the production of virus-specific antibodies and conferred protection against intracerebral injection of wild-type HSV-1 at a dose of 200 LD50. Protection probably was cell-mediated, as transfer of serum from immunized mice did not protect naive animals. We conclude that BAC-VACs per se, or in combination with genetic elements that support replicative amplification of the DNA in the cell nucleus, represent a useful new generation of DNA-based vaccination strategies for many viral and nonviral antigens.
Resumo:
A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses (“endoreplication”) or initiation of mitosis before DNA is fully replicated (“mitotic catastrophe”). Some of the genetic interactions involved in these controls have recently been identified in yeast. From this evidence we propose a molecular mechanism of “Start” control in Schizosaccharomyces pombe. Using established principles of biochemical kinetics, we compare the properties of this model in detail with the observed behavior of various mutant strains of fission yeast: wee1− (size control at Start), cdc13Δ and rum1OP (endoreplication), and wee1− rum1Δ (rapid division cycles of diminishing cell size). We discuss essential features of the mechanism that are responsible for characteristic properties of Start control in fission yeast, to expose our proposal to crucial experimental tests.
Resumo:
The importance of CCAAT/enhancer binding proteins (C/EBPs) and binding sites for HIV-1 replication in primary macrophages, T cell lines and primary CD4+ T cells was examined. When lines overexpressing the C/EBP dominant-negative protein LIP were infected with HIV-1, replication occurred in Jurkat T cells but not in U937 promonocytes, demonstrating a requirement for C/EBP activators by HIV-1 only in promonocytes. Primary macrophages did not support the replication of HIV-1 harboring mutant C/EBP binding sites in the long terminal repeat but Jurkat, H9 and primary CD4+ T cells supported replication of wild-type and mutant HIV-1 equally well. Thus the requirement for C/EBP sites is also confined to monocyte/macrophages. The requirement for C/EBP proteins and sites identifies the first uniquely macrophage-specific regulatory mechanism for HIV-1 replication.
Resumo:
Internodes of deepwater rice are induced to grow rapidly when plants become submerged. This adaptation enables deepwater rice to keep part of its foliage above the rising flood waters during the monsoon season and to avoid drowning. This growth response is, ultimately, elicited by the plant hormone gibberellin (GA). The primary target tissue for GA action is the intercalary meristem of the internode. Using differential display of mRNA, we have isolated a number of genes whose expression in the intercalary meristem is regulated by GA. The product of one of these genes was identified as an ortholog of replication protein A1 (RPA1). RPA is a heterotrimeric protein involved in DNA replication, recombination, and repair and also in regulation of transcription. A chimeric construct, in which the single-stranded DNA-binding domain of rice RPA1 was spliced into the corresponding region of yeast RPA1, was able to complement a yeast rpa1 mutant. The transcript level of rice RPA1 is high in tissues containing dividing cells. RPA1 mRNA levels increase rapidly in the intercalary meristem during submergence and treatment with GA before the increase in the level of histone H3 mRNA, a marker for DNA replication.
Resumo:
Increasing evidence suggests that HIV-1-specific cytotoxic T lymphocytes (CTLs) are a key host immune response to HIV-1 infection. Generation of CTL responses for prevention or therapy of HIV-1 infection has several intrinsic technical barriers such as antigen expression and presentation, the varying HLA restrictions between different individuals, and the potential for viral escape by sequence variation or surface molecule alteration on infected cells. A strategy to circumvent these limitations is the construction of a chimeric T cell receptor containing human CD4 or HIV-1-specific Ig sequences linked to the signaling domain of the T cell receptor ζ chain (universal T cell receptor). CD8+ CTLs transduced with this universal receptor can then bind and lyse infected cells that express surface HIV-1 gp120. We evaluated the ability of universal-receptor-bearing CD8+ cells from a seronegative donor to lyse acutely infected cells and inhibit HIV-1 replication in vitro. The kinetics of lysis and efficiency of inhibition were comparable to that of naturally occurring HIV-1-specific CTL clones isolated from infected individuals. Further study will be required to determine the utility of these cells as a therapeutic strategy in vivo.
Resumo:
Replication protein A (RPA) is required for both DNA replication and nucleotide excision repair. Previous studies have shown that RPA interacts with the tumor suppressor p53. Herein, we have mapped a 20-amino acid region in the N-terminal part of p53 that is essential for its binding to RPA. This region is distinct from the minimal activation domain of p53 previously identified. We also demonstrate that UV radiation of cells greatly reduces the ability of RPA to bind to p53. Interestingly, damage-induced hyperphosphorylated RPA does not associate with p53. Furthermore, down-regulation of the RPA/p53 interaction is dependent upon the capability of cells to perform global genome repair. On the basis of these data, we propose that RPA may participate in the coordination of DNA repair with the p53-dependent checkpoint control by sensing UV damage and releasing p53 to activate its downstream targets.
Resumo:
During reverse transcription of retroviral RNA, synthesis of (−) strand DNA is primed by a cellular tRNA that anneals to an 18-nt primer binding site within the 5′ long terminal repeat. For (+) strand synthesis using a (−) strand DNA template linked to the tRNA primer, only the first 18 nt of tRNA are replicated to regenerate the primer binding site, creating the (+) strand strong stop DNA intermediate and providing a 3′ terminus capable of strand transfer and further elongation. On model HIV templates that approximate the (−) strand linked to natural modified or synthetic unmodified tRNA3Lys, we find that a (+) strand strong stop intermediate of the proper length is generated only on templates containing the natural, modified tRNA3Lys, suggesting that a posttranscriptional modification provides the termination signal. In the presence of a recipient template, synthesis after strand transfer occurs only from intermediates generated from templates containing modified tRNA3Lys. Reverse transcriptase from Moloney murine leukemia virus and avian myoblastosis virus shows the same requirement for a modified tRNA3Lys template. Because all retroviral tRNA primers contain the same 1-methyl-A58 modification, our results suggest that 1-methyl-A58 is generally required for termination of replication 18 nt into the tRNA sequence, generating the (+) strand intermediate, strand transfer, and subsequent synthesis of the entire (+) strand. The possibility that the host methyl transferase responsible for methylating A58 may provide a target for HIV chemotherapy is discussed.
Resumo:
Human replication factor C (RFC, also called activator 1) is a five-subunit protein complex (p140, p40, p38, p37, and p36) required for proliferating cell nuclear antigen (PCNA)-dependent processive DNA synthesis catalyzed by DNA polymerase δ or ɛ. Here we report the reconstitution of the RFC complex from its five subunits simultaneously overexpressed in baculovirus-infected insect cells. The purified baculovirus-produced RFC appears to contain equimolar levels of each subunit and was shown to be functionally identical to its native counterpart in (i) supporting DNA polymerase δ-catalyzed PCNA-dependent DNA chain elongation; (ii) catalyzing DNA-dependent ATP hydrolysis that was stimulated by PCNA and human single-stranded DNA binding protein; (iii) binding preferentially to DNA primer ends; and (iv) catalytically loading PCNA onto singly nicked circular DNA and catalytically removing PCNA from these DNA molecules.
Resumo:
A detailed quantitative kinetic model for the polymerase chain reaction (PCR) is developed, which allows us to predict the probability of replication of a DNA molecule in terms of the physical parameters involved in the system. The important issue of the determination of the number of PCR cycles during which this probability can be considered to be a constant is solved within the framework of the model. New phenomena of multimodality and scaling behavior in the distribution of the number of molecules after a given number of PCR cycles are presented. The relevance of the model for quantitative PCR is discussed, and a novel quantitative PCR technique is proposed.
Resumo:
Lymphoid tissues from asymptomatic HIV-infected individuals, as compared with symptomatic HIV-infected subjects, show limited histopathological changes and lower levels of HIV expression. In this report we correlate the control of HIV replication in lymph nodes to the non-cytolytic anti-HIV activity of lymphoid tissue CD8+ cells. Five subjects at different stages of HIV-related disease were studied and the ability of their CD8+ cells, isolated from both lymphoid tissue and peripheral blood, to inhibit HIV replication was compared. CD8+ cells from lymphoid tissue and peripheral blood of two HIV-infected long-term survivors suppressed HIV replication at a low CD8+:CD4+ cell ratio of 0.1. The CD8+ cells from the lymphoid tissue of a third asymptomatic subject suppressed HIV replication at a CD8+:CD4+ cell ratio of 0.25; the subject’s peripheral blood CD8+ cells showed this antiviral response at a lower ratio of 0.05. The lymphoid tissue CD8+ cells from two AIDS patients were not able to suppress HIV replication, and the peripheral blood CD8+ cells of only one of them suppressed HIV replication. The plasma viremia, cellular HIV load as well as the extent of pathology and virus expression in the lymphoid tissue of the two long-term survivors, were reduced compared with these parameters in the three other subjects. The data suggest that the extent of anti-HIV activity by CD8+ cells from lymphoid tissue relative to peripheral blood correlates best with the clinical state measured by lymphoid tissue pathology and HIV burden in lymphoid tissues and blood. The results add further emphasis to the importance of this cellular immune response in controlling HIV pathogenesis.
Resumo:
The replication of damaged nucleotides that have escaped DNA repair leads to the formation of mutations caused by misincorporation opposite the lesion. In Escherichia coli, this process is under tight regulation of the SOS stress response and is carried out by DNA polymerase III in a process that involves also the RecA, UmuD′ and UmuC proteins. We have shown that DNA polymerase III holoenzyme is able to replicate, unassisted, through a synthetic abasic site in a gapped duplex plasmid. Here, we show that DNA polymerase III*, a subassembly of DNA polymerase III holoenzyme lacking the β subunit, is blocked very effectively by the synthetic abasic site in the same DNA substrate. Addition of the β subunit caused a dramatic increase of at least 28-fold in the ability of the polymerase to perform translesion replication, reaching 52% bypass in 5 min. When the ssDNA region in the gapped plasmid was extended from 22 nucleotides to 350 nucleotides, translesion replication still depended on the β subunit, but it was reduced by 80%. DNA sequence analysis of translesion replication products revealed mostly −1 frameshifts. This mutation type is changed to base substitution by the addition of UmuD′, UmuC, and RecA, as demonstrated in a reconstituted SOS translesion replication reaction. These results indicate that the β subunit sliding DNA clamp is the major determinant in the ability of DNA polymerase III holoenzyme to perform unassisted translesion replication and that this unassisted bypass produces primarily frameshifts.
Resumo:
Protein phosphatase 2A (PP2A) is an abundant, multifunctional serine/threonine-specific phosphatase that stimulates simian virus 40 DNA replication. The question as to whether chromosomal DNA replication also depends on PP2A was addressed by using a cell-free replication system derived from Xenopus laevis eggs. Immunodepletion of PP2A from Xenopus egg extract resulted in strong inhibition of DNA replication. PP2A was required for the initiation of replication but not for the elongation of previously engaged replication forks. Therefore, the initiation of chromosomal DNA replication depends not only on phosphorylation by protein kinases but also on dephosphorylation by PP2A.