931 resultados para renewable energy production
Resumo:
Nowadays microalgae are studied, and a number of species already mass-cultivated, for their application in many fields: food and feed, chemicals, pharmaceutical, phytoremediation and renewable energy. Phytoremediation, in particular, can become a valid integrated process in many algae biomass production systems. This thesis is focused on the physiological and biochemical effects of different environmental factors, mainly macronutrients, lights and temperature on microalgae. Microalgal species have been selected on the basis of their potential in biotechnologies, and nitrogen occurs in all chapters due to its importance in physiological and applicative fields. There are 5 chapters, ready or in preparation to be submitted, with different specific matters: (i) to measure the kinetic parameters and the nutrient removal efficiencies for a selected and local strain of microalgae; (ii) to study the biochemical pathways of the microalga D. communis in presence of nitrate and ammonium; (iii) to improve the growth and the removal efficiency of a specific green microalga in mixotrophic conditions; (iv) to optimize the productivity of some microalgae with low growth-rate conditions through phytohormones and other biostimulants; and (v) to apply the phyto-removal of ammonium in an effluent from anaerobic digestion. From the results it is possible to understand how a physiological point of view is necessary to provide and optimize already existing biotechnologies and applications with microalgae.
Resumo:
The demands in production and associate costs at power generation through non renewable resources are increasing at an alarming rate. Solar energy is one of the renewable resource that has the potential to minimize this increase. Utilization of solar energy have been concentrated mainly on heating application. The use of solar energy in cooling systems in building would benefit greatly achieving the goal of non-renewable energy minimization. The approaches of solar energy heating system research done by initiation such as University of Wisconsin at Madison and building heat flow model research conducted by Oklahoma State University can be used to develop and optimize solar cooling building system. The research uses two approaches to develop a Graphical User Interface (GUI) software for an integrated solar absorption cooling building model, which is capable of simulating and optimizing the absorption cooling system using solar energy as the main energy source to drive the cycle. The software was then put through a number of litmus test to verify its integrity. The litmus test was conducted on various building cooling system data sets of similar applications around the world. The output obtained from the software developed were identical with established experimental results from the data sets used. Software developed by other research are catered for advanced users. The software developed by this research is not only reliable in its code integrity but also through its integrated approach which is catered for new entry users. Hence, this dissertation aims to correctly model a complete building with the absorption cooling system in appropriate climate as a cost effective alternative to conventional vapor compression system.
Resumo:
Diminishing crude oil and natural gas supplies, along with concern about greenhouse gas are major driving forces in the search for efficient renewable energy sources. The conversion of lignocellulosic biomass to energy and useful chemicals is a component of the solution. Ethanol is most commonly produced by enzymatic hydrolysis of complex carbohydrates to simple sugars followed by fermentation using yeast. C6Hl0O5 + H2O −Enxymes→ C6H12O6 −Yeast→ 2CH3CH2OH + 2C02 In the U.S. corn is the primary starting raw material for commercial ethanol production. However, there is insufficient corn available to meet the future demand for ethanol as a gasoline additive. Consequently a variety of processes are being developed for producing ethanol from biomass; among which is the NREL process for the production of ethanol from white hardwood. The objective of the thesis reported here was to perform a technical economic analysis of the hardwood to ethanol process. In this analysis a Greenfield plant was compared to co-locating the ethanol plant adjacent to a Kraft pulp mill. The advantage of the latter case is that facilities can be shared jointly for ethanol production and for the production of pulp. Preliminary process designs were performed for three cases; a base case size of 2205 dry tons/day of hardwood (52 million gallons of ethanol per year) as well as the two cases of half and double this size. The thermal efficiency of the NREL process was estimated to be approximately 36%; that is about 36% of the thermal energy in the wood is retained in the product ethanol and by-product electrical energy. The discounted cash flow rate of return on investment and the net present value methods of evaluating process alternatives were used to evaluate the economic feasibility of the NREL process. The minimum acceptable discounted cash flow rate of return after taxes was assumed to be 10%. In all of the process alternatives investigated, the dominant cost factors are the capital recovery charges and the cost of wood. The Greenfield NREL process is not economically viable with the cost of producing ethanol varying from $2.58 to $2.08/gallon for the half capacity and double capacity cases respectively. The co-location cases appear more promising due to reductions in capital costs. The most profitable co-location case resulted in a discounted cash flow rate of return improving from 8.5% for the half capacity case to 20.3% for the double capacity case. Due to economy of scale, the investments become more and more profitable as the size of the plant increases. This concept is limited by the amount of wood that can be delivered to the plant on a sustainable basis as well as the demand for ethanol within a reasonable distance of the plant.
Resumo:
Estimates show that fossil fuel subsidies average USD 400–600 billion annually worldwide while renewable energy (RE) subsidies amounted to USD 66 billion in 2010 and are predicted to rise to USD 250 billion annually by 2035. Domestic political rationales for energy subsidies include promoting innovation, job creation and economic growth, energy security, and independence. Energy subsidies may also serve social and environmental goals. Whether and to what extent subsidies are effective to achieve these goals or instead lead to market distortions is a matter of much debate and the trade effects of energy subsidies are complex. This paper offers an overview of the types of energy subsidies that are used in the conventional and renewable energy sectors, and their relationship with climate change, in particular greenhouse gas emissions. While the WTO’s Agreement on Subsidies and Countervailing Measures (ASCM) is mostly concerned with harm to competitors, this paper considers the extent to which the Agreement could also discipline subsidies that cause harm to the environment as a global common. Beyond the existing legal framework, this paper surveys a number of alternatives for improving the ability of subsidies disciplines to internalize climate change costs of energy production and consumption. One option is a new multilateral agreement on subsidies or trade remedies (with an appropriate carve-out in the WTO regime to allow for it if such an agreement is concluded outside it). Alternatively, climate change-related subsidies could be included as part of another multilateral regime or as part of regional agreements. A third approach would be to incorporate rules on energy subsidies in sectorial agreements, including a Sustainable Energy Trade Agreement such as has been proposed in other ICTSD studies.
Resumo:
This paper explores the water-energy nexus of Spain and offers calculations for both the energy used in the water sector and the water required to run the energy sector. The article takes a prospective approach, offering evaluations of policy objectives for biofuels and expected renewable energy sources. Approximately 5.8% of total electricity demand in Spain is due to the water sector. Irrigated agriculture is one of the Spanish water sectors that show the largest growth in energy requirements. Searches for more efficient modes of farm water use, urban waste water treatment, and the use of desalinated water must henceforth include the energy component. Furthermore, biofuel production, to the levels targeted for 2020, would have an unbearable impact on the already stressed water resources in Spain. However, growing usage of renewable energy sources is not threatened by water scarcity, but legislative measures in water allocation and water markets will be required to meet the requirements of using these sources. Some of these measures, which are pushed by regional governments, are discussed in concluding sections.
Resumo:
Electricity price forecasting is an interesting problem for all the agents involved in electricity market operation. For instance, every profit maximisation strategy is based on the computation of accurate one-day-ahead forecasts, which is why electricity price forecasting has been a growing field of research in recent years. In addition, the increasing concern about environmental issues has led to a high penetration of renewable energies, particularly wind. In some European countries such as Spain, Germany and Denmark, renewable energy is having a deep impact on the local power markets. In this paper, we propose an optimal model from the perspective of forecasting accuracy, and it consists of a combination of several univariate and multivariate time series methods that account for the amount of energy produced with clean energies, particularly wind and hydro, which are the most relevant renewable energy sources in the Iberian Market. This market is used to illustrate the proposed methodology, as it is one of those markets in which wind power production is more relevant in terms of its percentage of the total demand, but of course our method can be applied to any other liberalised power market. As far as our contribution is concerned, first, the methodology proposed by García-Martos et al(2007 and 2012) is generalised twofold: we allow the incorporation of wind power production and hydro reservoirs, and we do not impose the restriction of using the same model for 24h. A computational experiment and a Design of Experiments (DOE) are performed for this purpose. Then, for those hours in which there are two or more models without statistically significant differences in terms of their forecasting accuracy, a combination of forecasts is proposed by weighting the best models(according to the DOE) and minimising the Mean Absolute Percentage Error (MAPE). The MAPE is the most popular accuracy metric for comparing electricity price forecasting models. We construct the combi nation of forecasts by solving several nonlinear optimisation problems that allow computation of the optimal weights for building the combination of forecasts. The results are obtained by a large computational experiment that entails calculating out-of-sample forecasts for every hour in every day in the period from January 2007 to Decem ber 2009. In addition, to reinforce the value of our methodology, we compare our results with those that appear in recent published works in the field. This comparison shows the superiority of our methodology in terms of forecasting accuracy.
Resumo:
Esta Tesis surgió ante la intensidad y verosimilitud de varias señales o “warnings” asociadas a políticas dirigidas a reducir el peso del petróleo en el sector energético, tanto por razones económicas, como geopolíticas, como ambientales. Como tal Tesis se consolidó al ir incorporando elementos novedosos pero esenciales en el mundo petrolífero, particularmente las “tecnologías habilitantes”, tanto de incidencia directa, como el “fracking” como indirecta, del cual es un gran ejemplo el Vehículo Eléctrico (puro). La Tesis se definió y estructuró para elaborar una serie de indagaciones y disquisiciones, que comportaran un conjunto de conclusiones que fueran útiles para las corporaciones energéticas. También para la comprensión de la propia evolución del sector y de sus prestaciones técnicas y económicas, de cara a dar el servicio que los usuarios finales piden. Dentro de las tareas analíticas y reflexivas de la Tesis, se acuñaron ciertos términos conceptuales para explicar más certeramente la realidad del sector, y tal es el caso del “Investment burden”, que pondera la inversión específica (€/W) requerida por una instalación, con la duración del período de construcción y los riesgos tanto tangibles como regulatorios. Junto a ello la Tesis propone una herramienta de estudio y prognosis, denominada “Market integrated energy efficiency”, especialmente aplicable a dicotomías. Tal es el caso del coche térmico, versus coche eléctrico. El objetivo es optimizar una determinada actividad energética, o la productividad total del sector. Esta Tesis propone varias innovaciones, que se pueden agrupar en dos niveles: el primero dentro del campo de la Energía, y el segundo dentro del campo de las corporaciones, y de manera especial de las corporaciones del sector hidrocarburos. A nivel corporativo, la adaptación a la nueva realidad será función directa de la capacidad de cada corporación para desarrollar y/o comprar las tecnologías que permitan mantener o aumentar cuota de mercado. Las conclusiones de la Tesis apuntan a tres opciones principalmente para un replanteamiento corporativo: - Diversificación energética - Desplazamiento geográfico - Beneficiándose de posibles nuevos nichos tecnológicos, como son: • En upstream: Recuperación estimulada de petróleo mediante uso de energías renovables • En downstream: Aditivos orientados a reducir emisiones • En gestión del cambio: Almacenamiento energético con fines operativos Algunas políticas energéticas siguen la tendencia de crecimiento cero de algunos países de la OCDE. No obstante, la realidad mundial es muy diferente a la de esos países. Por ejemplo, según diversas estimaciones (basadas en bancos de datos solventes, referenciados en la Tesis) el número de vehículos aumentará desde aproximadamente mil millones en la actualidad hasta el doble en 2035; mientras que la producción de petróleo sólo aumentará de 95 a 145 millones de barriles al día. Un aumento del 50% frente a un aumento del 100%. Esto generará un curioso desajuste, que se empezará a sentir en unos pocos años. Las empresas y corporaciones del sector hidrocarburos pueden perder el monopolio que atesoran actualmente en el sector transporte frente a todas las demás fuentes energéticas. Esa pérdida puede quedar compensada por una mejor gestión de todas sus capacidades y una participación más integrada en el mundo de la energía, buscando sinergias donde hasta ahora no había sino distanciamiento. Los productos petrolíferos pueden alimentar cualquier tipo de maquina térmica, como las turbinas Brayton, o alimentar reformadores para la producción masiva de H2 para su posterior uso en pilas combustible. El almacenamiento de productos derivados del petróleo no es ningún reto ni plantea problema alguno; y sin embargo este almacenamiento es la llave para resolver muchos problemas. Es posible que el comercio de petróleo se haga menos volátil debido a los efectos asociados al almacenamiento; pero lo que es seguro es que la eficiencia energética de los usos de ese petróleo será más elevada. La Tesis partía de ciertas amenazas sobre el futuro del petróleo, pero tras el análisis realizado se puede vislumbrar un futuro prometedor en la fusión de políticas medioambientales coercitivas y las nuevas tecnologías emergentes del actual portafolio de oportunidades técnicas. ABSTRACT This Thesis rises from the force and the credibility of a number of warning signs linked to policies aimed at reducing the role of petroleum in the energy industry due to economical, geopolitical and environmental drives. As such Thesis, it grew up based on aggregating new but essentials elements into the petroleum sector. This is the case of “enabling technologies” that have a direct impact on the petroleum industry (such as fracking), or an indirect but deep impact (such as the full electrical vehicle). The Thesis was defined and structured in such a way that could convey useful conclusions for energy corporations through a series of inquiries and treatises. In addition to this, the Thesis also aims at understating la evolution of the energy industry and its capabilities both technical and economical, towards delivering the services required by end users. Within the analytical task performed in the Thesis, new terms were coined. They depict concepts that aid at explaining the facts of the energy industry. This is the case for “Investment burden”, it weights the specific capital investment (€/W) required to build a facility with the time that takes to build it, as well as other tangible risks as those posed by regulation. In addition to this, the Thesis puts forward an application designed for reviewing and predicting: the so called “Market integrated energy efficiency”, especially well-suited for dichotomies, very appealing for the case of the thermal car versus the electric car. The aim is to optimize energy related activity; or even the overall productivity of the system. The innovations proposed in this Thesis can be classified in two tiers. Tier one, within the energy sector; and tier two, related to Energy Corporation in general, but with oil and gas corporations at heart. From a corporate level, the adaptation to new energy era will be linked with the corporation capability to develop or acquire those technologies that will yield to retaining or enhancing market share. The Thesis highlights three options for corporate evolution: - diversification within Energy - geographic displacement - profiting new technologies relevant to important niches of work for the future, as: o Upstream: enhanced oil recovery using renewable energy sources (for upstream companies in the petroleum business) o Downstream: additives for reducing combustion emissions o Management of Change: operational energy storage Some energy policies tend to follow the zero-growth of some OECD countries, but the real thing could be very different. For instance, and according to estimates the number of vehicles in use will grow from 1 billion to more than double this figure 2035; but oil production will only grow from 95 million barrel/day to 145 (a 50% rise of versus an intensification of over a 100%). Hydrocarbon Corporation can lose the monopoly they currently hold over the supply of energy to transportation. This lose can be mitigated through an enhanced used of their capabilities and a higher degree of integration in the world of energy, exploring for synergies in those places were gaps were present. Petroleum products can be used to feed any type of thermal machine, as Brayton turbines, or steam reformers to produce H2 to be exploited in fuel cells. Storing petroleum products does not present any problem, but very many problems can be solved with them. Petroleum trading will likely be less volatile because of the smoothing effects of distributed storage, and indeed the efficiency in petroleum consumption will be much higher. The Thesis kicked off with a menace on the future of petroleum. However, at the end of the analysis, a bright future can be foreseen in the merging between highly demanding environmental policies and the relevant technologies of the currently emerging technical portfolio.
Resumo:
Biodiesel is currently produced from a catalytic transesterification reaction of various types of edible and non-edible oil with methanol. The use of waste animal tallow instead of edible oils opens a route to recycle this waste. This material has the advantage of lower costs but the problem of high content of free fatty acids, becoming necessary a pre-esterification reaction that increases the cost of the catalytic process. The production of biodiesel using supercritical alcohols is appropriate for materials with high acidity and water content, therefore the use of this process with animal fat is a promising alternative. Ethanol has been used because it can be produced from biomass via fermentation resulting in a complete renewable biodiesel, instead of methanol that derives from fossil feedstocks. Two different processes have been studied: first, the direct transesterification of animal fat using supercritical ethanol and second a two-step process where the first step is a hydrolysis of the animal fat and the second step is the esterification of the resulting fatty acids. The temperature, the molar ratio ethanol:fat and the time have been modified in the different reactions to study the effect in the final conversion and the degradation of the unsaturated fatty acid esters, main inconvenient of these high temperature and pressure processes.
Resumo:
The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.
Resumo:
This collection of short essays arose from the inaugural meeting of the Idaho Symposium on Energy in the West, which was held in November, 2014. The topic for this first Symposium was Transmission and Transport of Energy in the Western U.S. and Canada: A Law and Policy Road Map. The essays in this collection provide a notable introduction to the major energy issues facing the West today. Topics include: building a resilient legal architecture for western energy production; natural gas flaring; transmission planning for wind energy; utilities and rooftop solar; special considerations for western states and the Clean Power Plan; the Clean Power Plan's implications for the western grid; siting renewable energy on public lands; and implications of utility reform in New York and Hawaii for the Northwest.
Resumo:
The aim of this technical report is to quantify alternative energy demand and supply scenarios for ten southern and eastern Mediterranean countries up to 2030. The report presents the model-based results of four alternative scenarios that are broadly in line with the MEDPRO scenario specifications on regional integration and cooperation with the EU. The report analyses the main implications of the scenarios in the following areas: • final energy demand by sector (industry, households, services, agriculture and transport); • the evolution of the power generation mix, the development of renewable energy sources and electricity exports to the EU; • primary energy production and the balance of trade for hydrocarbons; • energy-related CO2 emissions; and • power generation costs.
Resumo:
Summary. For more than two decades, the development of renewable energy sources (RES) has been an important aim of EU energy policy. It accelerated with the adoption of a 1997 White Paper and the setting a decade later of a 20% renewable energy target, to be reached by 2020. The EU counts on renewable energy for multiple purposes: to diversify its energy supply; to increase its security of supply; and to create new industries, jobs, economic growth and export opportunities, while at the same time reducing greenhouse gas (GHG) emissions. Many expectations rest on its development. Fossil fuels have been critical to the development of industrial nations, including EU Member States, which are now deeply reliant upon coal, oil and gas for nearly every aspect of their existence. Faced with some hard truths, however, the Member States have begun to shelve fossil fuel. These hard truths are as follows: firstly, fossil fuels are a finite resource, sometimes difficult to extract. This means that, at some point, fossil fuels are going to be more difficult to access in Europe or too expensive to use.1 The problem is that you cannot just stop using fossil fuels when they become too expensive; the existing infrastructure is profoundly reliant on fossil fuels. It is thus almost normal that a fierce resistance to change exists. Secondly, fossil fuels contribute to climate change. They emit GHG, which contribute greatly to climate change. As a consequence, their use needs to be drastically reduced. Thirdly, Member States are currently suffering a decline in their own fossil fuel production. This increases their dependence on increasingly costly fossil fuel imports from increasingly unstable countries. This problem is compounded by global developments: the growing share of emerging economies in global energy demand (in particular China and India but also the Middle East) and the development of unconventional oil and gas production in the United States. All these elements endanger the competitiveness of Member States’ economies and their security of supply. Therefore, new indigenous sources of energy and a diversification of energy suppliers and routes to convey energy need to be found. To solve all these challenges, in 2008 the EU put in place a strategy based on three objectives: sustainability (reduction of GHG), competitiveness and security of supply. The adoption of a renewable energy policy was considered essential for reaching these three strategic objectives. The adoption of the 20% renewable energy target has undeniably had a positive effect in the EU on the growth in renewables, with the result that renewable energy sources are steadily increasing their presence in the EU energy mix. They are now, it can be said, an integral part of the EU energy system. However, the necessity of reaching this 20% renewable energy target in 2020, combined with other circumstances, has also engendered in many Member States a certain number of difficulties, creating uncertainties for investors and postponing benefits for consumers. The electricity sector is the clearest example of this downside. Subsidies have become extremely abundant and vary from one Member State to another, compromising both fair competition and single market. Networks encountered many difficulties to develop and adapt. With technological progress these subsidies have also become quite excessive. The growing impact of renewable electricity fluctuations has made some traditional power plants unprofitable and created disincentives for new investments. The EU does clearly need to reassess its strategy. If it repeats the 2008 measures it will risk to provoke increased instability and costs.
Resumo:
Germany’s current energy strategy, known as the “energy transition”, or Energiewende, involves an accelerated withdrawal from the use of nuclear power plants and the development of renewable energy sources (RES). According to the government’s plans, the share of RES in electricity production will gradually increase from its present rate of 26% to 80% in 2050. Greenhouse gas emissions are expected to fall by 80–95% by 2050 when compared to 1990 levels. However, coal power plants still predominate in Germany’s energy mix – they produced 44% of electricity in 2014 (26% from lignite and 18% from hard coal). This makes it difficult to meet the emission reduction objectives, lignite combustion causes the highest levels of greenhouse gas emissions. In order to reach the emission reduction goals, the government launched the process of accelerating the reduction of coal consumption. On 2 July, the Federal Ministry for Economic Affairs and Energy published a plan to reform the German energy market which will be implemented during the present term of government. Emission reduction from coal power plants is the most important issue. This problem has been extensively discussed over the past year and has transformed into a conflict between the government and the coal lobby. The dispute reached its peak when lignite miners took to the streets in Berlin. As the government admits, in order to reach the long-term emission reduction objectives, it is necessary to completely liquidate the coal energy industry in Germany. This is expected to take place within 25 to 30 years. However, since the decision to decommission nuclear power plants was passed, the German ecological movement and the Green Party have shifted their attention to coal power plants, demanding that these be decommissioned by 2030 at the latest.
Resumo:
"DOE/BP-6"--P. 4 of cover.
Resumo:
Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.