916 resultados para refined multiscale entropy
Resumo:
By means of the time dependent density matrix renormalization group algorithm we study the zero-temperature dynamics of the Von Neumann entropy of a block of spins in a Heisenberg chain after a sudden quench in the anisotropy parameter. In the absence of any disorder the block entropy increases linearly with time and then saturates. We analyse the velocity of propagation of the entanglement as a function of the initial and final anisotropies and compare our results, wherever possible, with those obtained by means of conformal field theory. In the disordered case we find a slower ( logarithmic) evolution which may signal the onset of entanglement localization.
Resumo:
This paper provides an overview of research on modelling of the structure–property interactions of polymer nanocomposites in manufacturing processes (stretch blow moulding and thermoforming) involving large-strain biaxial stretching of relatively thin sheets, aimed at developing computer modelling tools to help producers of materials, product designers and manufacturers exploit these materials to the full, much more quickly than could be done by experimental methods alone. The exemplar systems studied are polypropylene and polyester terephalate, with nanoclays. These were compounded and extruded into 2mm thick sheet which was then biaxially stretched at 155°C for the PP and 90 to 100°C for the PET. Mechanical properties were determined for the unstretched and stretched materials, together with TEM and XRD studies of structure. Multi-scale modelling, using representative volume elements is used to model the properties of these products.
Resumo:
We present a step-by-step guide of a refined magnetoseismological technique for plasma diagnostics in the Sun’s corona. Recently developed MHD wave theory which models a coronal loop as an expanding magnetic flux tube with an arbitrary longitudinal plasma density profile is applied to TRACE observations of fast kink
oscillations. The theory predicts that using the observed ratio of the first overtone and fundamental mode to predict the plasma density scale height and not taking account of loop expansion will lead to an overestimation of scale height. For the first time, the size of this correction is quantified directly from observation and for the particular case study presented here, it is found that the overestimation is approximately by a factor of 2.
Multiscale simulation of nanometric cutting of single crystal copper and its experimental validation
Resumo:
In this paper a multiscale simulation study was carried out in order to gain in-depth understanding of machining mechanism of nanometric cutting of single crystal copper. This study was focused on the effects of crystal orientation and cutting direction on the attainable machined surface quality. The machining mechanics was analyzed through cutting forces, chip formation morphology, generation and evolution of defects and residual stresses on the machined surface. The simulation results showed that the crystal orientation of the copper material and the cutting direction significantly influenced the deformation mechanism of the workpiece materials during the machining process. Relatively lower cutting forces were experienced while selecting crystal orientation family {1 1 1}. Dislocation movements were found to concentrate in front of the cutting chip while cutting on the (1 1 1) surface along the View the MathML source cutting direction thus, resulting in much smaller damaged layer on the machined surface, compared to other orientations. This crystal orientation and cutting direction therefore recommended for nanometric cutting of single crystal copper in practical applications. A nano-scratching experiment was performed to validate the above findings.
Resumo:
Life science research aims to continuously improve the quality and standard of human life. One of the major challenges in this area is to maintain food safety and security. A number of image processing techniques have been used to investigate the quality of food products. In this paper,we propose a new algorithm to effectively segment connected grains so that each of them can be inspected in a later processing stage. One family of the existing segmentation methods is based on the idea of watersheding, and it has shown promising results in practice.However,due to the over-segmentation issue,this technique has experienced poor performance in various applications,such as inhomogeneous background and connected targets. To solve this problem,we present a combination of two classical techniques to handle this issue.In the first step,a mean shift filter is used to eliminate the inhomogeneous background, where entropy is used to be a converging criterion. Secondly,a color gradient algorithm is used in order to detect the most significant edges, and a marked watershed transform is applied to segment cluttered objects out of the previous processing stages. The proposed framework is capable of compromising among execution time, usability, efficiency and segmentation outcome in analyzing ring die pellets. The experimental results demonstrate that the proposed approach is effectiveness and robust.
Resumo:
We consider the concept of temperature in a setting beyond the standard thermodynamics prescriptions. Namely, rather than restricting to standard coarse-grained measurements, we consider observers able to master any possible quantum measurement -a scenario that might be relevant at nanoscopic scales. In this setting, we focus on quantum systems of coupled harmonic oscillators and study the question of whether the temperature is an intensive quantity, in the sense that a block of a thermal state can be approximated by an effective thermal state at the same temperature as the whole system. Using the quantum fidelity as figure of merit, we identify instances in which this approximation is not valid, as the block state and the reference thermal state are distinguishable for refined measurements. Actually, there are situations in which this distinguishability even increases with the block size. However, we also show that the two states do become less distinguishable with the block size for coarse-grained measurements -thus recovering the standard picture. We then go further and construct an effective thermal state which provides a good approximation of the block state for any observables and sizes. Finally, we point out the role that entanglement plays in this scenario by showing that, in general, the thermodynamic paradigm of local intensive temperature applies whenever entanglement is not present in the system. Copyright (C) EPLA, 2012
Resumo:
Identification of adulteration in mechanically extracted oils or the botanical origin of refined vegetable oil blends can be effectively achieved through the combination of spectroscopic methods and chemometric techniques. Chromatographic methods remain highly relevant but suffer from various limitations which derive from natural compositional variation. Modern multivariate techniques have demonstrated that it is possible to identify patterns and effectively classify unknown samples in both cases. Development of robust analytical methodologies requires however vigorous validation. Spectroscopic methods combined with chemometric techniques lack established validation protocols and this might hinder their use by law enforcement authorities.
Resumo:
European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work.
Resumo:
Background: The identification of pre-clinical microvascular damage in hypertension by non-invasive techniques has proved frustrating for clinicians. This proof of concept study investigated whether entropy, a novel summary measure for characterizing blood velocity waveforms, is altered in participants with hypertension and may therefore be useful in risk stratification.
Methods: Doppler ultrasound waveforms were obtained from the carotid and retrobulbar circulation in 42 participants with uncomplicated grade 1 hypertension (mean systolic/diastolic blood pressure (BP) 142/92 mmHg), and 26 healthy controls (mean systolic/diastolic BP 116/69 mmHg). Mean wavelet entropy was derived from flow-velocity data and compared with traditional haemodynamic measures of microvascular function, namely the resistive and pulsatility indices.
Results: Entropy, was significantly higher in control participants in the central retinal artery (CRA) (differential mean 0.11 (standard error 0.05 cms(-1)), CI 0.009 to 0.219, p 0.017) and ophthalmic artery (0.12 (0.05), CI 0.004 to 0.215, p 0.04). In comparison, the resistive index (0.12 (0.05), CI 0.005 to 0.226, p 0.029) and pulsatility index (0.96 (0.38), CI 0.19 to 1.72, p 0.015) showed significant differences between groups in the CRA alone. Regression analysis indicated that entropy was significantly influenced by age and systolic blood pressure (r values 0.4-0.6). None of the measures were significantly altered in the larger conduit vessel.
Conclusion: This is the first application of entropy to human blood velocity waveform analysis and shows that this new technique has the ability to discriminate health from early hypertensive disease, thereby promoting the early identification of cardiovascular disease in a young hypertensive population.