933 resultados para real-time quantitative PCR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A importância do cão como reservatório de L. infantum chagasi no meio urbano tem estimulado a realização de inúmeros trabalhos de avaliação de técnicas de diagnóstico, uma vez que este procedimento, quando realizado corretamente, torna-se um importante passo na prevenção da doença em humanos. Dentre os métodos de diagnóstico, as técnicas moleculares têm adquirido destaque. Objetivou-se neste trabalho verificar o desempenho da Reação em Cadeia da Polimerase (PCR) e da PCR em tempo real (qPCR) para diagnóstico da Leishmaniose Visceral Canina (LVC) utilizando diferentes amostras biológicas. Para tanto foram utilizados 35 cães provenientes de uma área endêmica para LVC, onde foram utilizados para o diagnóstico molecular, aspirado de medula óssea, fragmentos de linfonodo e baço. Neste estudo a qPCR foi capaz de detectar um maior número de animais positivos quando comparada com a PCR. Já entre as diferentes amostras biológicas utilizadas não foi observada diferença significativa na detecção de DNA de L. infantumchagasi por meio da PCR e qPCR. Mesmo assim, considerando a facilidade de obtenção, o linfonodo pode ser considerada como a melhor amostra para diagnóstico molecular da infecção por L. infantum chagasi.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Suspicion of Brazilian spotted fever (BSF) should occur in endemic regions upon surveillance of the acute febrile icteric hemorrhagic syndrome (AFIHS). However, limitations associated with currently available laboratory tests pose a challenge to early diagnosis, especially in fatal cases. Two real-time PCR (qPCR) protocols were evaluated to diagnose BSF in 110 fatal AFIHS cases, collected in BSF-endemic regions in 2009-2010. Of these, 24 were positive and 86 negative by indirect immunofluorescence (IFA) assay (cutoff IgG and/or IgM >= 128). DNA from these samples was used in the qPCR protocols: one to detect Rickettsia spp. (Citrate synthase gene) and another to determine spotted fever group (SFG) Rickettsia species (OmpA gene). Of the 24 IFA-positive samples, 5 (21%) were positive for OmpA and 9 (38%) for citrate synthase. In the IFA-negative group (n = 86), OmpA and citrate synthase were positive in 23 (27%) and 27 (31%), respectively. These results showed that the 2 qPCR protocols were about twice as sensitive as the IFA test alone (93% concordance). In conclusion, qPCR is a sensitive method for the diagnosis of fatal BSF cases and should be considered for routine surveillance of AFIHS in places like Brazil, where spotted fever-related lethality is high and other endemic diseases like dengue and leptospirosis can mislead diagnosis. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Cryptosporidium parvum infection is very important with respect to public health, owing to foodborne and waterborne outbreaks and gastrointestinal illness in immunocompetent and immunocompromised persons. In cattle, infection with this species manifests either as a subclinical disease or with diarrheal illness, which occurs more often in the presence of other infectious agents than when alone. The aim of this study was to develop a real-time polymerase chain reaction (PCR) assay for the detection of C. parvum in calf fecal samples and to compare the results of this assay with those of the method routinely used for the diagnosis of Cryptosporidium spp., nested PCR targeting the 18S rRNA gene. Two hundred and nine fecal samples from calves ranging in age from 1 day to 6 months were examined using real-time PCR specific for the actin gene of C. parvum and by a nested PCR targeting the 18S rRNA gene of Cryptosporidium spp. Using real-time PCR detection, 73.2% (153 out of 209) of the samples were positive for C. parvum, while 56.5% (118 out of 209) of the samples were positive for Cryptosporidium spp. when the nested PCR amplification method was used for the detection. The analytical sensitivity of the real-time PCR was approximately one C. parvum oocyst. There was no significant nonspecific DNA amplification of any of the following species and genotype: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium bovis, Cryptosporidium canis, Cryptosporidium galli, Cryptosporidium ryanae, Cryptosporidium serpentis, or avian genotype II. Thus, we conclude that real-time PCR targeting the actin gene is a sensitive and specific method for the detection of C. parvum in calf fecal samples.
Resumo:
Abstract Background The expression of glucocorticoid-receptor (GR) seems to be a key mechanism in the regulation of glucocorticoid (GC) sensitivity and is potentially involved in cases of GC resistance or hypersensitivity. The aim of this study is to describe a method for quantitation of GR alpha isoform (GRα) expression using real-time PCR (qrt-PCR) with analytical capabilities to monitor patients, offering standard-curve reproducibility as well as intra- and inter-assay precision. Results Standard-curves were constructed by employing standardized Jurkat cell culture procedures, both for GRα and BCR (breakpoint cluster region), as a normalizing gene. We evaluated standard-curves using five different sets of cell culture passages, RNA extraction, reverse transcription, and qrt-PCR quantification. Intra-assay precision was evaluated using 12 replicates of each gene, for 2 patients, in a single experiment. Inter-assay precision was evaluated on 8 experiments, using duplicate tests of each gene for two patients. Standard-curves were reproducible, with CV (coefficient of variation) of less than 11%, and Pearson correlation coefficients above 0,990 for most comparisons. Intra-assay and inter-assay were 2% and 7%, respectively. Conclusion This is the first method for quantitation of GRα expression with technical characteristics that permit patient monitoring, in a fast, simple and robust way.
Resumo:
Evaluation of the technical and diagnostic feasibility of commercial multiplex real-time polymerase chain reaction (PCR) for detection of blood stream infections in a cohort of intensive care unit (ICU) patients with severe sepsis, performed in addition to conventional blood cultures.
Resumo:
The impact of a semiquantitative commercially available test based on DNA-strip technology (microIDent®, Hain Lifescience, Nehren, Germany) on diagnosis and treatment of severe chronic periodontitis of 25 periodontitis patients was evaluated in comparison with a quantitative in-house real-time PCR. Subgingival plaque samples were collected at baseline as well as at 3, 6, and 12 months later. After extracting DNA, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and several other periodontopathogens were determined by both methods. The results obtained by DNA-strip technology were analyzed semiquantitatively and additionally quantitatively by densitometry. The results for the 4 major periodontopathogenic bacterial species correlated significantly between the 2 methods. Samples detecting a high bacterial load by one method and negative by the other were always found in less than 2% of the total samples. Both technologies showed the impact of treatment on microflora. Especially the semiquantitative DNA-strip technology clearly analyzed the different loads of periodontopathogens after therapy and is useful in microbial diagnostics for patients in dental practices.
Resumo:
Bovine mastitis caused by Mycoplasma bovis is of great economic importance to the beef and dairy industry. Here we describe a new specific real-time PCR assay targeting the uvrC gene that was developed to directly detect M. bovis from milk and tissue samples without laborious DNA purification.