912 resultados para real time monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time image analysis and classification onboard robotic marine vehicles, such as AUVs, is a key step in the realisation of adaptive mission planning for large-scale habitat mapping in previously unexplored environments. This paper describes a novel technique to train, process, and classify images collected onboard an AUV used in relatively shallow waters with poor visibility and non-uniform lighting. The approach utilises Förstner feature detectors and Laws texture energy masks for image characterisation, and a bag of words approach for feature recognition. To improve classification performance we propose a usefulness gain to learn the importance of each histogram component for each class. Experimental results illustrate the performance of the system in characterisation of a variety of marine habitats and its ability to operate onboard an AUV's main processor suitable for real-time mission planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthotopic or intracardiac injection of human breast cancer cell lines into immunocompromised mice allows study of the molecular basis of breast cancer metastasis. We have established a quantitative real-time PCR approach to analyze metastatic spread of human breast cancer cells inoculated into nude mice via these routes. We employed MDA-MB-231 human breast cancer cells genetically tagged with a bacterial β-galactosidase (Lac-Z) retroviral vector, enabling their detection by TaqMan® real-time PCR. PCR detection was linear, specific, more sensitive than conventional PCR, and could be used to directly quantitate metastatic burden in bone and soft organs. Attesting to the sensitivity and specificity of the PCR detection strategy, as few as several hundred metastatic MDA-MB-231 cells were detectable in 100 μm segments of paraffin-embedded lung tissue, and only in samples adjacent to sections that scored positive by histological detection. Moreover, the measured real-time PCR metastatic burden in the bone environment (mouse hind-limbs, n = 48) displayed a high correlation to the degree of osteolytic damage observed by high resolution X-ray analysis (r2 = 0.972). Such a direct linear relationship to tumor burden and bone damage substantiates the so-called 'vicious cycle' hypothesis in which metastatic tumor cells promote the release of factors from the bone which continue to stimulate the tumor cells. The technique provides a useful tool for molecular and cellular analysis of human breast cancer metastasis to bone and soft organs, can easily be extended to other cell/marker/organ systems, and should also find application in preclinical assessment of anti-metastatic modalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper elaborates on the Cybercars-2 Wireless Communication Framework for driverless city vehicles, which is used for Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication. The developed framework improves the safety and efficiency of driverless city vehicles. Furthermore, this paper also elaborates on the vehicle control software architecture. On-road tests of both the communication framework and its application for real-time decision making show that the communication framework is reliable and useful for improving the safe operation of driverless city vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work elaborates on the topic of decision making for driverless city vehicles, particularly focusing on the aspects on how to develop a reliable approach which meets the requirements of safe city traffic. Decision making in this context refers to the problem of identifying the most appropriate driving maneuver to be performed in a given traffic situation. The overall decision making problem is decomposed into two consecutive stages. The first stage is safety-crucial, representing the decision regarding the set of feasible driving maneuvers. The second stage represents the decision regarding the most appropriate driving maneuver from the set of feasible ones. The developed decision making approach has been implemented in C++ and initially tested in a 3D simulation environment and, thereafter, in real-world experiments. The real-world experiments also included the integration of wireless communication between vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the topic of real-time decision making by autonomous city vehicles. Beginning with an overview of the state of research, the paper presents the vehicle decision making & control systemarchitecture, explains the subcomponents which are relevant for decision making (World Model and Driving Maneuver subsystem), and presents the decision making process. Experimental test results confirmthe suitability of the developed approach to deal with the complex real-world urban traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e. the autonomous vehicles’ ability to make appropriate driving decisions in city road traffic situations. After decomposing the problem into two consecutive decision making stages, and giving a short overview about previous work, the paper explains how Multiple Criteria Decision Making (MCDM) can be used in the process of selecting the most appropriate driving maneuver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis addresses the topic of real-time decision making by driverless (autonomous) city vehicles, i.e. their ability to make appropriate driving decisions in non-simplified urban traffic conditions. After addressing the state of research, and explaining the research question, the thesis presents solutions for the subcomponents which are relevant for decision making with respect to information input (World Model), information output (Driving Maneuvers), and the real-time decision making process. TheWorld Model is a software component developed to fulfill the purpose of collecting information from perception and communication subsystems, maintaining an up-to-date view of the vehicle’s environment, and providing the required input information to the Real-Time Decision Making subsystem in a well-defined, and structured way. The real-time decision making process consists of two consecutive stages. While the first decision making stage uses a Petri net to model the safetycritical selection of feasible driving maneuvers, the second stage uses Multiple Criteria Decision Making (MCDM) methods to select the most appropriate driving maneuver, focusing on fulfilling objectives related to efficiency and comfort. The complex task of autonomous driving is subdivided into subtasks, called driving maneuvers, which represent the output (i.e. decision alternatives) of the real-time decision making process. Driving maneuvers are considered as implementations of closed-loop control algorithms, each capable of maneuvering the autonomous vehicle in a specific traffic situation. Experimental tests in both a 3D simulation and real-world experiments attest that the developed approach is suitable to deal with the complexity of real-world urban traffic situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymorphisms of glutathione transferases (GST) are important genetic determinants of susceptibility to environmental carcinogens (Rebbeck, 1997). The GSTs are a multigene family of dimeric enzymes involved in detoxification, and, in a few cases, the bioactivation of a variety of xenobiotics (Hayes et al., 1995). The cytosolic GST enzyme family consists of four major classes of enzymes, referred to as alpha, mu, pi and theta. Several members of this family (for example, GSTM1, GSTT1 and GSTP1) are polymorphic in human populations (Wormhoudt et al., 1999). Molecular epidemiology studies have examined the role of GST polymorphisms as susceptibility factors for environmentally and/or occupationally induced cancers (Wormhoudt et al., 1999). In particular, case-control studies showed a relationship between the GSTM1 null genotype and the development of cancer in association with smoking habits, which has been shown for cancers of the respiratory and gastrointestinal tracts as well as other cancer types (Miller et al., 1997). Only a few molecular epidemiological studies addressed the role of GSTT1 and GSTP1 polymorphisms in cancer susceptibility. Since GSTP1 is a key player in biotransformation/bioactivation of benzo(a)pyrene, GSTP1 may be even more important than GSTM1 in the prevention of tobacco-induced cancers (Harries et al., 1997; Harris et al., 1998). To date, this relationship has not been sufficiently addressed in humans. Comprehensive molecular epidemiological studies may add to the current knowledge of the role of GST polymorphisms in cancer susceptibility and extent of the knowledge gained from approaches that used phenotyping, such as GSTM1 activity as it relates to trans-stilbene oxide, or polymerase chain reaction (PCR) based genotyping of polymorphic isoenzymes (Bell et al., 1993; Pemble et al., 1994; Harries et al., 1997).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ascidians are marine invertebrates that have been a source of numerous cytotoxic compounds. Of the first six marine-derived drugs that made anticancer clinical trials, three originated from ascidian specimens. In order to identify new anti-neoplastic compounds, an ascidian extract library (143 samples) was generated and screened in MDA-MB-231 breast cancer cells using a real-time cell analyzer (RTCA). This resulted in 143 time-dependent cell response profiles (TCRP), which are read-outs of changes to the growth rate, morphology, and adhesive characteristics of the cell culture. Twenty-one extracts affected the TCRP of MDA-MB-231 cells and were further investigated regarding toxicity and specificity, as well as their effects on cell morphology and cell cycle. The results of these studies were used to prioritize extracts for bioassay-guided fractionation, which led to the isolation of the previously identified marine natural product, eusynstyelamide B (1). This bis-indole alkaloid was shown to display an IC50 of 5 μM in MDA-MB-231 cells. Moreover, 1 caused a strong cell cycle arrest in G2/M and induced apoptosis after 72 h treatment, making this molecule an attractive candidate for further mechanism of action studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network Real-Time Kinematic (NRTK) is a technology that can provide centimeter-level accuracy positioning services in real time, and it is enabled by a network of Continuously Operating Reference Stations (CORS). The location-oriented CORS placement problem is an important problem in the design of a NRTK as it will directly affect not only the installation and operational cost of the NRTK, but also the quality of positioning services provided by the NRTK. This paper presents a Memetic Algorithm (MA) for the location-oriented CORS placement problem, which hybridizes the powerful explorative search capacity of a genetic algorithm and the efficient and effective exploitative search capacity of a local optimization. Experimental results have shown that the MA has better performance than existing approaches. In this paper we also conduct an empirical study about the scalability of the MA, effectiveness of the hybridization technique and selection of crossover operator in the MA.