917 resultados para reaction microscope
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
Species-specific Random Amplified Polymorphic DNA-Polymerase chain Reaction (RAPD-PCR) markers were used to identify four species related to Anopheles (Nyssorhynchus) albitarsis Lynch-Arribàlzaga from 12 sites in Brazil and 4 in Venezuela. In a previous study (Wilkerson et al. 1995), which included sites in Paraguay and Argentina, these four species were designated "A", "B", "C" and "D". It was hypothesized that species A is An. (Nys.) albitarsis, species B is undescribed, species C is An. (Nys) marajoara Galvão and Damasceno and species D is An. (Nys.) deaneorum Rosa-Freitas. Species D, previously characterized by RAPD-PCR from a small sample from northern Argentina and southern Brazil, is reported here from the type locality of An. (Nys.) deaneorum, Guajará-Mirim, state of Rondônia, Brazil. Species C and D were found by RAPD-PCR to be sympatric at Costa Marques, state of Rondônia, Brazil. Species A and C have yet to be encountered at the same locality. The RAPD markers for species C were found to be conserved over 4,620 km; from Iguape, state of São Paulo, Brazil to rio Socuavo, state of Zulia, Venezuela. RAPD-PCR was determined to be an effective means for the identification of unknown species within this species complex.
Resumo:
BACKGROUND: The value of adenovirus plasma DNA detection as an indicator for adenovirus disease is unknown in the context of T cell-replete hematopoietic cell transplantation, of which adenovirus disease is an uncommon but serious complication. METHODS: Three groups of 62 T cell-replete hematopoietic cell transplant recipients were selected and tested for adenovirus in plasma by polymerase chain reaction. RESULTS: Adenovirus was detected in 21 (87.5%) of 24 patients with proven adenovirus disease (group 1), in 4 (21%) of 19 patients who shed adenovirus (group 2), and in 1 (10.5%) of 19 uninfected control patients. The maximum viral load was significantly higher in group 1 (median maximum viral load, 6.3x10(6) copies/mL; range, 0 to 1.0x10(9) copies/mL) than in group 2 (median maximum viral load, 0 copies/mL; range, 0 to 1.7x10(8) copies/mL; P<.001) and in group 3 (median maximum viral load, 0 copies/mL; range 0-40 copies/mL; P<.001). All patients in group 2 who developed adenoviremia had symptoms compatible with adenovirus disease (i.e., possible disease). A minimal plasma viral load of 10(3) copies/mL was detected in all patients with proven or possible disease. Adenoviremia was detectable at a median of 19.5 days (range, 8-48 days) and 24 days (range, 9-41 days) before death for patients with proven and possible adenovirus disease, respectively. CONCLUSION: Sustained or high-level adenoviremia appears to be a specific and sensitive indicator of adenovirus disease after T cell-replete hematopoietic cell transplantation. In the context of low prevalence of adenovirus disease, the use of polymerase chain reaction of plasma specimens to detect virus might be a valuable tool to identify and treat patients at risk for viral invasive disease.
Resumo:
The low stringency-polymerase chain reaction (LS-PCR) with a pair of specific primers for the amplification of the 18S rRNA gene was evaluated as a means of differentiating between the two Schistosoma mansoni intermediate host species in Brazil: Biomphalaria glabrata and B. tenagophila. Individual snails obtained from different states of Brazil were used and the amplification patterns obtained showed a high degree of genetic variability in these species. Nevertheless, 4 and 3 clearly defined specific diagnostic bands was observed in individuals from B. glabrata and B. tenagophila respectively. The detection of snail specific diagnostic bands suggests the possibility of reliable species differentiation at the DNA level using LS-PCR.
Resumo:
Although Biomphalaria occidentalis and B. tenagophila are indistinguishable on the basis of shell morphology and the majority of their genital organs, only the latter is susceptible to infection with Schistosoma mansoni. Thus, the identification of these species is fundamental to epidemiological studies of schistosomiasis. Here we describe a simple and rapid method for differentiating B. tenagophila from B. occidentalis based on low stringency polymerase chain reaction and using a pair of primers specific for the amplification of the 18S rRNA gene. Analysis of the low stringency product profiles of populations of these snails from different geographical regions confirmed this approach as being applicable to the identification of B. tenagophila and B. occidentalis in cases where classical morphology is inconclusive
Resumo:
The aim of this study was to develop a polymerase chain reaction (PCR) for the detection of respiratory syncytial virus (RSV) genomes. The primers were designed from published sequences and selected from conserved regions of the genome encoding for the N protein of subgroups A and B of RSV. PCR was applied to 20 specimens from children admitted to the respiratory ward of "William Soler" Pediatric Hospital in Havana City with a clinical diagnosis of bronchiolitis. The PCR was compared with viral isolation and with an indirect immunofluorescence technique that employs monoclonal antibodies of subgroups A and B. Of 20 nasopharyngeal exudates, 10 were found positive by the three assayed methods. In only two cases, samples that yielded positive RNA-PCR were found negative by indirect immunofluorescence and cell culture. Considering viral isolation as the "gold standard" technique, RNA-PCR had 100% sensitivity and 80% specificity. RNA-PCR is a specific and sensitive technique for the detection of the RSV genome. Technical advantages are discussed
Resumo:
We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR) for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique
Resumo:
A rapid identification of dengue viruses from clinical samples by using a nested reverse transcriptase-polymerase chain reaction (RT-PCR) procedure was carried out for diagnostic and epidemiological purposes. RT-PCR identified DEN-1 and DEN-2 viruses in 41% (41/100) of previously confirmed cases and provided an accurate confirmation of DHF in four fatal cases. RT-PCR was also useful for detecting and typing dengue viruses in suspected cases, allowing a rapid identification of new serotypes in endemic areas
Resumo:
Schistosomiasis is a disease whose pathology is strongly related to the granulomatous reaction formed around parasite eggs trapped in host tissues. Studies have shown that the chronic intestinal form (INT) of this infection is associated with a variety of immunoregulatory mechanisms which lead to a diminished granulomatous reaction. Using an in vitro model of granuloma reaction, we show that immune complexes (IC) isolated from sera of INT patients are able to reduce granulomatous reaction developed by peripheral blood mononuclear cells (PBMC) from acute (AC), INT and hepatosplenic (HE) patients to soluble egg antigen (SEA)-conjugated polyacrylamide beads (PB-SEA). This inhibitory activity is also observed in cell proliferation assay of PBMC from INT and HE patients stimulated with SEA and adult worm antigen (SWAP). Furthermore, IC isolated from sera of patients with different clinical forms of the disease are also able to suppress INT patients PBMC reactivity. Therefore, our results show that circulating IC present in sera of patients with different clinical forms of schistosomiasis may down-regulate PBMC reactivity to parasite antigens resulting in a diminished granuloma reaction to parasite eggs
Resumo:
Twelve patients with a catastrophic reaction (CR) (an outburst of frustration, depression, and anger when confronted with a task) were identified in a prospective cohort population (n = 326) with first-ever stroke admitted within 48 hours from onset. The authors' findings suggest that CR is a rare though not exceptional phenomenon in acute stroke and is associated with nonfluent aphasias and left opercular lesions. CR, poststroke depression, and emotionalism are distinct but related disorders.