742 resultados para raccomandazione e-learning privacy tecnica rule-based recommender suggerimento
Förderung des Leseverständnisses durch Lesestrategien: Eine Interventionsstudie in der Grundschule
Resumo:
Anliegen dieser Dissertation ist die Untersuchung des Einflusses eines Lesestrategietrainings auf die Entwicklung des Leseverständnisses in den Klassen 2 und 4. In einer experimentellen Studie mit Prä-Post-Test-Design wurde die Wirksamkeit eines 25 Sitzungen umfassenden Trainings der Strategien Vorhersagen, kleinschrittiges Wiederholen und Zusammenfassen den Effekten einer lesefernen Kontrollbedingung gegenübergestellt. Die Lesestrategien wurden peergestützt vermittelt, d. h. in Dyaden aus einem leseschwächeren und einem lesestärkeren Kind. In drei Teilstudien wurden Fragestellungen zur differenzierten Analyse der Trainingswirksamkeit untersucht: (1) Wird die Trainingswirksamkeit durch die Effizienz der Worterkennungsprozesse beeinflusst?, (2) Kann die Entwicklung der Leseflüssigkeit durch das Lesestrategietraining gefördert werden? und (3) Können leseschwache Kinder von der Zusammenarbeit mit lesestärkeren Tutor(inn)en hinsichtlich der Verbesserung ihres Leseverständnisses profitieren?. Die Ergebnisse dieser Dissertation sprechen dafür, dass das eingesetzte peergestützte Lesestrategietraining das Leseverständnis und die Leseflüssigkeit von Zweit- und Viertklässler(inne)n unter bestimmten Voraussetzungen positiv beeinflussen konnte. Die Leseleistungen vor dem Training, die Effizienz der Worterkennungsprozesse und die Rolle im dyadischen Lernen erwiesen sich als relevante Einflussfaktoren für die Wirksamkeit des Strategietrainings. Zweitklässler(innen), die aufgrund guter Prä-Test Leseleistungen die Tutor(inn)enrolle erhielten, konnten ihr Leseverständnis gegenüber Kindern mit gleichen Leseleistungen in der Kontrollbedingung signifikant steigern. Leseschwache Zweitklässler(innen) hingegen schienen nur bei (relativ) effizienten Worterkennungsprozessen die Lesestrategien zur Steigerung ihres globalen Leseverständnisses nutzen zu können, wobei sie keinen Zugewinn aus der dyadischen Zusammenarbeit ziehen konnten. Bei ineffizienten Worterkennungsprozessen hatte das Strategietraining negative Auswirkungen auf das allgemeine Leseverständnis. Anders in Klasse 4: Kinder, die aufgrund unterdurchschnittlicher Leseleistungen im Prä-Test als Tutand(inn)en am Training teilnahmen, verbesserten ihr Leseverständnis und konnten dabei von der Zusammenarbeit mit lesestarken Tutor(inn)en profitieren. Für die Tutor(inn)en in Klasse 4 zeigte sich kein Effekt des Strategietrainings gegenüber der Kontrollgruppe. In beiden Klassenstufen stellte sich im Verlauf des Strategietrainings eine schnellere Entwicklung der Leseflüssigkeit der schwachen Leser(innen) ein. Zusammengefasst erzielte das Training die größten Effekte für gute Leser(innen) in Klasse 2 und schwache Leser(innen) in Klasse 4 – beide Gruppen konnten ihr Leseverständnis praktisch bedeutsam gegenüber Kindern mit gleichen Leseleistungen in der Kontrollbedingung steigern.
Resumo:
As exploration of our solar system and outerspace move into the future, spacecraft are being developed to venture on increasingly challenging missions with bold objectives. The spacecraft tasked with completing these missions are becoming progressively more complex. This increases the potential for mission failure due to hardware malfunctions and unexpected spacecraft behavior. A solution to this problem lies in the development of an advanced fault management system. Fault management enables spacecraft to respond to failures and take repair actions so that it may continue its mission. The two main approaches developed for spacecraft fault management have been rule-based and model-based systems. Rules map sensor information to system behaviors, thus achieving fast response times, and making the actions of the fault management system explicit. These rules are developed by having a human reason through the interactions between spacecraft components. This process is limited by the number of interactions a human can reason about correctly. In the model-based approach, the human provides component models, and the fault management system reasons automatically about system wide interactions and complex fault combinations. This approach improves correctness, and makes explicit the underlying system models, whereas these are implicit in the rule-based approach. We propose a fault detection engine, Compiled Mode Estimation (CME) that unifies the strengths of the rule-based and model-based approaches. CME uses a compiled model to determine spacecraft behavior more accurately. Reasoning related to fault detection is compiled in an off-line process into a set of concurrent, localized diagnostic rules. These are then combined on-line along with sensor information to reconstruct the diagnosis of the system. These rules enable a human to inspect the diagnostic consequences of CME. Additionally, CME is capable of reasoning through component interactions automatically and still provide fast and correct responses. The implementation of this engine has been tested against the NEAR spacecraft advanced rule-based system, resulting in detection of failures beyond that of the rules. This evolution in fault detection will enable future missions to explore the furthest reaches of the solar system without the burden of human intervention to repair failed components.
Resumo:
This paper studies the initial development of certain language components. More precisely, we analyse the relation between three aspects that are closely involved in the grammar of the verb: morphological productivity, syntactic complexity, and verb vocabulary learning. The study is based on data about the relationship between lexical development and grammatical development, and also on proposals that a critical mass of vocabulary is needed in order to develop a grammatical component. The sample comprised six subjects who are monolingual or bilingual in Catalan andlor Spanish. Results show a morphological spurt some time afer the learning of a certain quantity of verbs. Moreover, syntactic complexity is only evident some months after this morphological spurt
Resumo:
La present tesi pretén recollir l'experiència viscuda en desenvolupar un sistema supervisor intel·ligent per a la millora de la gestió de plantes depuradores d'aigües residuals., implementar-lo en planta real (EDAR Granollers) i avaluar-ne el funcionament dia a dia amb situacions tÃpiques de la planta. Aquest sistema supervisor combina i integra eines de control clà ssic de les plantes depuradores (controlador automà tic del nivell d'oxigen dissolt al reactor biològic, ús de models descriptius del procés...) amb l'aplicació d'eines del camp de la intel·ligència artificial (sistemes basats en el coneixement, concretament sistemes experts i sistemes basats en casos, i xarxes neuronals). Aquest document s'estructura en 9 capÃtols diferents. Hi ha una primera part introductòria on es fa una revisió de l'estat actual del control de les EDARs i s'explica el perquè de la complexitat de la gestió d'aquests processos (capÃtol 1). Aquest capÃtol introductori juntament amb el capÃtol 2, on es pretén explicar els antecedents d'aquesta tesi, serveixen per establir els objectius d'aquest treball (capÃtol 3). A continuació, el capÃtol 4 descriu les peculiaritats i especificitats de la planta que s'ha escollit per implementar el sistema supervisor. Els capÃtols 5 i 6 del present document exposen el treball fet per a desenvolupar el sistema basat en regles o sistema expert (capÃtol 6) i el sistema basat en casos (capÃtol 7). El capÃtol 8 descriu la integració d'aquestes dues eines de raonament en una arquitectura multi nivell distribuïda. Finalment, hi ha una darrer capÃtol que correspon a la avaluació (verificació i validació), en primer lloc, de cadascuna de les eines per separat i, posteriorment, del sistema global en front de situacions reals que es donin a la depuradora
Resumo:
La implantació de Sistemes de Suport a la presa de Decisions (SSD) en Estacions Depuradores d'Aigües Residuals Urbanes (EDAR) facilita l'aplicació de tècniques més eficients basades en el coneixement per a la gestió del procés, assegurant la qualitat de l'aigua de sortida tot minimitzant el cost ambiental de la seva explotació. Els sistemes basats en el coneixement es caracteritzen per la seva capacitat de treballar amb dominis molt poc estructurats, i gran part de la informació rellevant de tipus qualitatiu i/o incerta. Precisament aquests són els trets caracterÃstics que es poden trobar en els sistemes biològics de depuració, i en conseqüència en una EDAR. No obstant, l'elevada complexitat dels SSD fa molt costós el seu disseny, desenvolupament i aplicació en planta real, pel que resulta determinant la generació d'un protocol que faciliti la seva exportació a EDARs de tecnologia similar. L'objectiu del present treball de Tesi és precisament el desenvolupament d'un protocol que faciliti l'exportació sistemà tica de SSD i l'aprofitament del coneixement del procés prèviament adquirit. El treball es desenvolupa en base al cas d'estudi resultant de l'exportació a l'EDAR Montornès del prototipus original de SSD implementat a l'EDAR Granollers. Aquest SSD integra dos tipus de sistemes basats en el coneixement, concretament els sistemes basats en regles (els quals són programes informà tics que emulen el raonament humà i la seva capacitat de solucionar problemes utilitzant les mateixes fonts d'informació) i els sistemes de raonament basats en casos (els quals són programes informà tics basats en el coneixement que volen solucionar les situacions anormals que pateix la planta en el moment actual mitjançant el record de l'acció efectuada en una situació passada similar). El treball està estructurat en diferents capÃtols, en el primer dels quals, el lector s'introdueix en el món dels sistemes de suport a la decisió i en el domini de la depuració d'aigües. Seguidament es fixen els objectius i es descriuen els materials i mètodes utilitzats. A continuació es presenta el prototipus de SSD desenvolupat per la EDAR Granollers. Una vegada el prototipus ha estat presentat es descriu el primer protocol plantejat pel mateix autor de la Tesi en el seu Treball de Recerca. A continuació es presenten els resultats obtinguts en l'aplicació prà ctica del protocol per generar un nou SSD, per una planta depuradora diferent, partint del prototipus. L'aplicació prà ctica del protocol permet l'evolució del mateix cap a un millor pla d'exportació. Finalment, es pot concloure que el nou protocol redueix el temps necessari per realitzar el procés d'exportació, tot i que el nombre de passos necessaris ha augmentat, la qual cosa significa que el nou protocol és més sistemà tic.
Resumo:
Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.
Resumo:
In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.
Resumo:
Dual-system models suggest that English past tense morphology involves two processing routes: rule application for regular verbs and memory retrieval for irregular verbs (Pinker, 1999). In second language (L2) processing research, Ullman (2001a) suggested that both verb types are retrieved from memory, but more recently Clahsen and Felser (2006) and Ullman (2004) argued that past tense rule application can be automatised with experience by L2 learners. To address this controversy, we tested highly proficient Greek-English learners with naturalistic or classroom L2 exposure compared to native English speakers in a self-paced reading task involving past tense forms embedded in plausible sentences. Our results suggest that, irrespective to the type of exposure, proficient L2 learners of extended L2 exposure apply rule-based processing.
Resumo:
This project is concerned with the way that illustrations, photographs, diagrams and graphs, and typographic elements interact to convey ideas on the book page. A framework for graphic description is proposed to elucidate this graphic language of ‘complex texts’. The model is built up from three main areas of study, with reference to a corpus of contemporary children’s science books. First, a historical survey puts the subjects for study in context. Then a multidisciplinary discussion of graphic communication provides a theoretical underpinning for the model; this leads to various proposals, such as the central importance of ratios and relationships among parts in creating meaning in graphic communication. Lastly a series of trials in description contribute to the structure of the model itself. At the heart of the framework is an organising principle that integrates descriptive models from fields of design, literary criticism, art history, and linguistics, among others, as well as novel categories designed specifically for book design. Broadly, design features are described in terms of elemental component parts (micro-level), larger groupings of these (macro-level), and finally in terms of overarching, ‘whole book’ qualities (meta-level). Various features of book design emerge at different levels; for instance, the presence of nested discursive structures, a form of graphic recursion in editorial design, is proposed at the macro-level. Across these three levels are the intersecting categories of ‘rule’ and ‘context’, offering different perspectives with which to describe graphic characteristics. Contextbased features are contingent on social and cultural environment, the reader’s previous knowledge, and the actual conditions of reading; rule-based features relate to the systematic or codified aspects of graphic language. The model aims to be a frame of reference for graphic description, of use in different forms of qualitative or quantitative research and as a heuristic tool in practice and teaching.
Resumo:
Individual differences in cognitive style can be characterized along two dimensions: ‘systemizing’ (S, the drive to analyze or build ‘rule-based’ systems) and ‘empathizing’ (E, the drive to identify another's mental state and respond to this with an appropriate emotion). Discrepancies between these two dimensions in one direction (S > E) or the other (E > S) are associated with sex differences in cognition: on average more males show an S > E cognitive style, while on average more females show an E > S profile. The neurobiological basis of these different profiles remains unknown. Since individuals may be typical or atypical for their sex, it is important to move away from the study of sex differences and towards the study of differences in cognitive style. Using structural magnetic resonance imaging we examined how neuroanatomy varies as a function of the discrepancy between E and S in 88 adult males from the general population. Selecting just males allows us to study discrepant E-S profiles in a pure way, unconfounded by other factors related to sex and gender. An increasing S > E profile was associated with increased gray matter volume in cingulate and dorsal medial prefrontal areas which have been implicated in processes related to cognitive control, monitoring, error detection, and probabilistic inference. An increasing E > S profile was associated with larger hypothalamic and ventral basal ganglia regions which have been implicated in neuroendocrine control, motivation and reward. These results suggest an underlying neuroanatomical basis linked to the discrepancy between these two important dimensions of individual differences in cognitive style.
Resumo:
Robotics is a key theme in many of the degrees offered in Systems Engineering. The topic has proved useful in attracting students to the University, and it also provides the basis of much practical and project work throughout the degrees. This paper focuses on one aspect, a Part 2 project in which students doing various degrees work together to develop a mobile robot which is controlled remotely to navigate an environment and perform specific tasks. In addition to providing practical experience of relevant academic topics, this project helps to contribute to key teaching and learning priorities including problem based learning, motivation and important employability skills.
Resumo:
Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accuracy can be enhanced, but traditional sum-rule based fusion algorithms are known to be highly sensitive to single spoofed instances. This paper investigates 1-median filtering as a spoofing-resistant generalised alternative to the sum-rule targeting the problem of partial multibiometric spoofing where m out of n biometric sources to be combined are attacked. Augmenting previous work, this paper investigates the dynamic detection and rejection of livenessrecognition pair outliers for spoofed samples in true multi-modal configuration with its inherent challenge of normalisation. As a further contribution, bootstrap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm is presented. Experiments on the latest face video databases (Idiap Replay- Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate the efficiency of proposed techniques.