999 resultados para réseaux Bayésiens dynamiques
Resumo:
L’uso frequente dei modelli predittivi per l’analisi di sistemi complessi, naturali o artificiali, sta cambiando il tradizionale approccio alle problematiche ambientali e di rischio. Il continuo miglioramento delle capacità di elaborazione dei computer facilita l’utilizzo e la risoluzione di metodi numerici basati su una discretizzazione spazio-temporale che permette una modellizzazione predittiva di sistemi reali complessi, riproducendo l’evoluzione dei loro patterns spaziali ed calcolando il grado di precisione della simulazione. In questa tesi presentiamo una applicazione di differenti metodi predittivi (Geomatico, Reti Neurali, Land Cover Modeler e Dinamica EGO) in un’area test del Petén, Guatemala. Durante gli ultimi decenni questa regione, inclusa nella Riserva di Biosfera Maya, ha conosciuto una rapida crescita demografica ed un’incontrollata pressione sulle sue risorse naturali. L’area test puó essere suddivisa in sotto-regioni caratterizzate da differenti dinamiche di uso del suolo. Comprendere e quantificare queste differenze permette una migliore approssimazione del sistema reale; é inoltre necessario integrare tutti i parametri fisici e socio-economici, per una rappresentazione più completa della complessità dell’impatto antropico. Data l’assenza di informazioni dettagliate sull’area di studio, quasi tutti i dati sono stati ricavati dall’elaborazione di 11 immagini ETM+, TM e SPOT; abbiamo poi realizzato un’analisi multitemporale dei cambi uso del suolo passati e costruito l’input per alimentare i modelli predittivi. I dati del 1998 e 2000 sono stati usati per la fase di calibrazione per simulare i cambiamenti nella copertura terrestre del 2003, scelta come data di riferimento per la validazione dei risultati. Quest’ultima permette di evidenziare le qualità ed i limiti per ogni modello nelle differenti sub-regioni.
Resumo:
Les réseaux d'entreprises formatrices constituent un modèle du système de formation professionnelle en alternance Suisse. Petites et moyennes entreprises peuvent ainsi mutualiser la formation des apprentis. Quelles raisons poussent les entreprises à participer à ce nouveau type d’organisation ? Quels conflits et tensions naissent au sein de ces réseaux ? Les analyses s’appuient sur quatre cas de réseaux et sur la théorie de l'économie des conventions. Ces réseaux naissent d’une pluralité de motifs de participation, source d’insatisfaction dans les entreprises et de conflits dans les réseaux tout au long du parcours de formation.
Resumo:
La cybersécurité représente un enjeu important pour les services en charge de la sécurité canadienne à l’ère de l’expansion des Menaces Persistantes Avancées (MSP ou cybercrimes de type 1). Ces crimes se déroulent essentiellement dans le cyberespace, ce qui implique l’adoption de mesures spécifiques adéquates à l’environnement numérique, notamment à l’épreuve de son ubiquité. Le gouvernement canadien a pour sa part publié certaines mesures de défense passive et active dont la plus connue est la stratégie canadienne de cybersécurité. Puisque le cyberespace n’est pas limité territorialement, l’autorité canadienne a conclu plusieurs partenariats internationaux d’où ressortent des mesures bilatérales et multilatérales de protection et de renforcement de la cybersécurité. Toutefois, ces diverses mesures nationales et internationales ne tracent pas de cadre légal précisant la nature et le régime juridique des MSP; précisions sans lesquelles l’adoption de règles au plan national serait improductive. Considérant que l’espace numérique est international, il appelle la mise en place de mesures applicables à l’échelle universelle. Or, au plan international, il n’existe aucun texte à valeur légale spécifique à l’espèce. Ainsi, à la question de savoir, quels textes légaux pourraient s’appliquer, il s’est avéré que le jus ad bellum et la Convention européenne contre le cybercrime (Convention de Budapest) apportaient d’incontournables éléments de réponse. D’une part, le jus ad bellum permet de définir la catégorie d’acte dans laquelle peuvent être rangées les MSP, et d’autre part, la Convention de Budapest permet de définir les infractions informatiques commises par les différents acteurs en cause, les procédures d’investigation appropriées et les mécanismes utiles à la coopération internationale. Bien que les éléments ressortis de ces ententes internationales soient utiles à l’adoption d’un corps de règles internationales uniformes, les intérêts étatiques divergents constituent des obstacles de taille.
Resumo:
Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.
Resumo:
Les informations sensorielles sont traitées dans le cortex par des réseaux de neurones co-activés qui forment des assemblées neuronales fonctionnelles. Le traitement visuel dans le cortex est régit par différents aspects des caractéristiques neuronales tels que l’aspect anatomique, électrophysiologique et moléculaire. Au sein du cortex visuel primaire, les neurones sont sélectifs à divers attributs des stimuli tels que l’orientation, la direction, le mouvement et la fréquence spatiale. Chacun de ces attributs conduit à une activité de décharge maximale pour une population neuronale spécifique. Les neurones du cortex visuel ont cependant la capacité de changer leur sélectivité en réponse à une exposition prolongée d’un stimulus approprié appelée apprentissage visuel ou adaptation visuelle à un stimulus non préférentiel. De ce fait, l’objectif principal de cette thèse est d’investiguer les mécanismes neuronaux qui régissent le traitement visuel durant une plasticité induite par adaptation chez des animaux adultes. Ces mécanismes sont traités sous différents aspects : la connectivité neuronale, la sélectivité neuronale, les propriétés électrophysiologiques des neurones et les effets des drogues (sérotonine et fluoxétine). Le modèle testé se base sur les colonnes d’orientation du cortex visuel primaire. La présente thèse est subdivisée en quatre principaux chapitres. Le premier chapitre (A) traite de la réorganisation du cortex visuel primaire suite à une plasticité induite par adaptation visuelle. Le second chapitre (B) examine la connectivité neuronale fonctionnelle en se basant sur des corrélations croisées entre paires neuronales ainsi que sur des corrélations d’activités de populations neuronales. Le troisième chapitre (C) met en liaison les aspects cités précédemment (les effets de l’adaptation visuelle et la connectivité fonctionnelle) aux propriétés électrophysiologiques des neurones (deux classes de neurones sont traitées : les neurones à décharge régulière et les neurones à décharge rapide ou burst). Enfin, le dernier chapitre (D) a pour objectif l’étude de l’effet du couplage de l’adaptation visuelle à l’administration de certaines drogues, notamment la sérotonine et la fluoxétine (inhibiteur sélectif de recapture de la sérotonine). Méthodes En utilisant des enregistrements extracellulaires d’activités neuronales dans le cortex visuel primaire (V1) combinés à un processus d’imagerie cérébrale optique intrinsèque, nous enregistrons l’activité de décharge de populations neuronales et nous examinons l’activité de neurones individuels extraite des signaux multi-unitaires. L’analyse de l’activité cérébrale se base sur différents algorithmes : la distinction des propriétés électrophysiologiques des neurones se fait par calcul de l’intervalle de temps entre la vallée et le pic maximal du potentiel d’action (largeur du potentiel d’action), la sélectivité des neurones est basée sur leur taux de décharge à différents stimuli, et la connectivité fonctionnelle utilise des calculs de corrélations croisées. L’utilisation des drogues se fait par administration locale sur la surface du cortex (après une craniotomie et une durotomie). Résultats et conclusions Dans le premier chapitre, nous démontrons la capacité des neurones à modifier leur sélectivité après une période d’adaptation visuelle à un stimulus particulier, ces changements aboutissent à une réorganisation des cartes corticales suivant un patron spécifique. Nous attribuons ce résultat à la flexibilité de groupes fonctionnels de neurones qui étaient longtemps considérés comme des unités anatomiques rigides. En effet, nous observons une restructuration extensive des domaines d’orientation dans le but de remodeler les colonnes d’orientation où chaque stimulus est représenté de façon égale. Ceci est d’autant plus confirmé dans le second chapitre où dans ce cas, les cartes de connectivité fonctionnelle sont investiguées. En accord avec les résultats énumérés précédemment, les cartes de connectivité montrent également une restructuration massive mais de façon intéressante, les neurones utilisent une stratégie de sommation afin de stabiliser leurs poids de connectivité totaux. Ces dynamiques de connectivité sont examinées dans le troisième chapitre en relation avec les propriétés électrophysiologiques des neurones. En effet, deux modes de décharge neuronale permettent la distinction entre deux classes neuronales. Leurs dynamiques de corrélations distinctes suggèrent que ces deux classes jouent des rôles clés différents dans l’encodage et l’intégration des stimuli visuels au sein d’une population neuronale. Enfin, dans le dernier chapitre, l’adaptation visuelle est combinée avec l’administration de certaines substances, notamment la sérotonine (neurotransmetteur) et la fluoxétine (inhibiteur sélectif de recapture de la sérotonine). Ces deux substances produisent un effet similaire en facilitant l’acquisition des stimuli imposés par adaptation. Lorsqu’un stimulus non optimal est présenté en présence de l’une des deux substances, nous observons une augmentation du taux de décharge des neurones en présentant ce stimulus. Nous présentons un modèle neuronal basé sur cette recherche afin d’expliquer les fluctuations du taux de décharge neuronale en présence ou en absence des drogues. Cette thèse présente de nouvelles perspectives quant à la compréhension de l’adaptation des neurones du cortex visuel primaire adulte dans le but de changer leur sélectivité dans un environnement d’apprentissage. Nous montrons qu’il y a un parfait équilibre entre leurs habiletés plastiques et leur dynamique d’homéostasie.