971 resultados para quantum confinement model
Resumo:
We propose a physical model for generating multipartite entangled states of spin-s particles that have important applications in distributed quantum information processing. Our protocol is based on a process where mobile spins induce the interaction among remote scattering centers. As such, a major advantage lies in the management of stationary and well-separated spins. Among the generable states, there is a class of N-qubit singlets allowing for optimal quantum telecloning in a scalable and controllable way. We also show how to prepare Aharonov, W, and Greenberger-Horne-Zeilinger states.
Resumo:
We study quantum correlations in an isotropic Ising ring under the effects of a transverse magnetic field. After characterizing the behavior of two-spin quantum correlations, we extend our analysis to global properties of the ring, using a figure of merit for quantum correlations that shows enough sensitivity to reveal the drastic changes in the properties of the system at criticality. This opens up the possibility to relate statistical properties of quantum many-body systems to suitably tailored measures of quantum correlations that capture features going far beyond standard quantum entanglement.
Resumo:
As estruturas quânticas de semicondutores, nomeadamente baseadas em GaAs, têm tido nos últimos vinte anos um claro desenvolvimento. Este desenvolvimento deve-se principalmente ao potencial tecnológico que estas estruturas apresentam. As aplicações espaciais, em ambientes agressivos do ponto de vista do nível de radiação a que os dispositivos estão sujeitos, motivaram todo o desenrolar de estudos na área dos defeitos induzidos pela radiação. As propriedades dos semicondutores e dos dispositivos de semicondutores são altamente influenciadas pela presença de defeitos estruturais, em particular os induzidos pela radiação. As propriedades dos defeitos, os processos de criação e transformação de defeitos devem ser fortemente alterados quando se efectua a transição entre o semicondutor volúmico e as heteroestruturas de baixa dimensão. Este trabalho teve como principal objectivo o estudo de defeitos induzidos pela radiação em estruturas quânticas baseadas em GaAs e InAs. Foram avaliadas as alterações introduzidas pelos defeitos em estruturas de poços quânticos e de pontos quânticos irradiadas com electrões e com protões. A utilização de várias técnicas de espectroscopia óptica, fotoluminescência, excitação de fotoluminescência e fotoluminescência resolvida no tempo, permitiu caracterizar as diferentes estruturas antes e após a irradiação. Foi inequivocamente constatada uma maior resistência à radiação dos pontos quânticos quando comparados com os poços quânticos e os materiais volúmicos. Esta resistência deve-se principalmente a uma maior localização da função de onda dos portadores com o aumento do confinamento dos mesmos. Outra razão provável é a expulsão dos defeitos dos pontos quânticos para a matriz. No entanto, a existência de defeitos na vizinhança dos pontos quânticos promove a fuga dos portadores dos níveis excitados, cujas funções de onda são menos localizadas, provocando um aumento da recombinação nãoradiativa e, consequentemente, uma diminuição da intensidade de luminescência dos dispositivos. O desenvolvimento de um modelo bastante simples para a estatística de portadores fora de equilíbrio permitiu reproduzir os resultados de luminescência em função da temperatura. Os resultados demonstraram que a extinção da luminescência com o aumento da temperatura é determinada por dois factores: a redistribuição dos portadores minoritários entre os pontos quânticos, o poço quântico e as barreiras de GaAs e a diminuição na taxa de recombinação radiativa relacionada com a dependência, na temperatura, do nível de Fermi dos portadores maioritários.
Resumo:
Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within a two-dimensional (2D) separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation
Resumo:
Using a phenomenological model, the influence of quantum electrodynamical effects on the prediction of the chemical behavior of superheavy elements within a relativistic Dirac-Slater calculation was investigated. This influence will be small and nondetectable for elements up to Z = 114. For elements near Z = 164 some changes in the ground state configurations occur but the chemical behavior will not change. Using this heuristic model, it is also possible to calculate elements beyond Z = 175. As an example we have chosen element E184 and are now able to make more valid speculations about the chemical behavior of the element than Penneman and co-workers could.
Resumo:
A computational model of observation in quantum mechanics is presented. The model provides a clean and simple computational paradigm which can be used to illustrate and possibly explain some of the unintuitive and unexpected behavior of some quantum mechanical systems. As examples, the model is used to simulate three seminal quantum mechanical experiments. The results obtained agree with the predictions of quantum mechanics (and physical measurements), yet the model is perfectly deterministic and maintains a notion of locality.
Resumo:
We determined by means of photoluminescence measurements the dependence on temperature of the transition energy of excitons in GaAs/Al(x)Ga(1-x)As quantum wells with different alloy concentrations (with different barrier heights). Using a fitting procedure, we determined the parameters which describe the behavior of the excitonic transition energy as a function of temperature according to three different theoretical models. We verified that the temperature dependence of the excitonic transition energy does not only depend on the GaAs material but also depends on the barrier material, i.e. on the alloy composition. The effect of confinement on the temperature dependence of the excitonic transition is discussed.
Resumo:
The so-called conformal affine Toda theory coupled to the matter fields (CATM), associated to the (s) over capl(2) affine Lie algebra, is studied. The conformal symmetry is fixed by setting a connection to zero, then one defines an off-critical model, the affine Toda model coupled to the matter (ATM). Using the dressing transformation method we construct the explicit forms of the two-soliton classical solutions, and show that a physical bound soliton-antisoliton pair (breather) does not exist. Moreover, we verify that these solutions share some features of the sine-Gordon (massive Thirring) solitons, and satisfy the classical equivalence of topological and Noether currents in the ATM model. We show, using bosonization techniques that the ATM theory decouples into a sine-Gordon model and a free scalar. Imposing the Noether and topological currents equivalence as a constraint, one can show that the ATM model leads to a bag model like mechanism for the confinement of the color charge inside the sine-Gordon solitons (baryons).
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.
Resumo:
We propose an approach which allows one to construct and use a potential function written in terms of an angle variable to describe interacting spin systems. We show how this can be implemented in the Lipkin-Meshkov-Glick, here considered a paradigmatic spin model. It is shown how some features of the energy gap can be interpreted in terms of a spin tunneling. A discrete Wigner function is constructed for a symmetric combination of two states of the model and its time evolution is obtained. The physical information extracted from that function reinforces our description of phase oscillations in a potential. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value