250 resultados para pyrimidine
Resumo:
DNA serves as a target molecule for several types of enzymes and may assume a wide variety of structural motifs depending upon the local sequence. The BssHII restriction site (GC)3 resides in a 9bp region of alternating pyrimidine and purine residues within the &phis;X174 genome. Such sequences are known to demonstrate non-canonical helical behavior under the appropriate conditions. The kinetics of BssHII cleavage was investigated in supercoiled and linear plasmid DNA, and in a 323bp DNA fragment obtained via amplification of &phis;X174. The rate of enzyme cleavage was enhanced in the supercoiled form and in the presence of 50μM cobalt hexamine. Similarly, cobalt hexamine was also found to enhance TaqI activity directly adjacent to the (GC)3 region. ^ Initial DNA polymerase I binding studies (including a gel mobility shift assay and a protection assay) indicated a notable interaction between DNA polymerase I and the BssHII site. An in-depth study revealed that equilibrium binding of DNA polymerase I to the T7 RNA polymerase promoter was comparable to that of the (GC)3 site, however the strongest interaction was observed with a cruciform containing region. Increasing the ionic strength of the solution environment, including the addition of DNA polymerase I reaction buffer significantly decreased the equilibrium dissociation constant values. ^ It is suggested that the region within or around the BssHII site experiences a conformational change generating a novel structure under the influence of supercoiled tension or 50μM cobalt hexamine. It is proposed that this transition may enhance enzyme activity and binding by providing an initial enzyme-docking site—the rate-limiting step in restriction enzyme kinetics. The high binding potential of DNA polymerase I for each of the motifs described, is hypothesized to be due to recognition of the structural DNA anomalies by the 3′–5′ exonuclease domain. ^
Resumo:
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Gemcitabine is a nucleoside pyrimidine analog that has long been the backbone of chemotherapy for PDAC, both as a single agent, and more recently, in combination with nab-paclitaxel. Since gemcitabine is hydrophilic, it must be transported through the hydrophobic cell membrane by transmembrane nucleoside transporters. Human equilibrative nucleoside transporter-1 (hENT1) and human concentrative nucleoside transporter-3 (hCNT3) both have important roles in the cellular uptake of the nucleoside analog gemcitabine. While low expression of hENT1 and hCNT3 has been linked to gemcitabine resistance clinically, mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. We identified that the matricellular protein Cysteine-Rich Angiogenic Inducer 61 (CYR61) negatively regulates expression of hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 significantly increased expression of hENT1 and hCNT3 and cellular uptake of gemcitabine. CRSIPR-mediated knockout of CYR61 sensitized PDAC cells to gemcitabine-induced apoptosis. Conversely, adenovirus-mediated overexpression of CYR61 decreased hENT1 expression and reduced gemcitabine-induced apoptosis. We demonstrate that CYR61 is expressed primarily by stromal pancreatic stellate cells (PSCs) within the PDAC tumor microenvironment, with Transforming Growth Factor- β (TGF-β) inducing the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in an in vitro co-culture assay with PDAC cells. Our results identify CYR61 as a TGF-β induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.
Resumo:
Background An early objective biomarker to predict the severity of hypoxic-ischaemic encephalopathy (HIE) and identify infants suitable for intervention remains elusive. This thesis aims to progress metabolomic markers of HIE through a pipeline of biomarker discovery and validation by employing a novel untargeted mass spectrometry metabolomic method. Methodology Term infants with perinatal asphyxia were recruited, all having umbilical cord blood (UCB) drawn and biobanked within three hours of birth. HIE was defined by Sarnat score at 24hours and continuous multichannel-EEG. Infant neurodevelopment was assessed at 36-42 months using the Bayley Scales of Infant and Toddler Development Ed. III (BSID-III). Untargeted metabolomic analysis of UCB was performed using direct injection FT-ICR mass spectrometry (DI FT-ICR MS). Putative metabolite annotations and lipid classes were assigned and pathway analysis was performed. Results Untargeted metabolomic analysis: Thirty enrolled infants were diagnosed with HIE, including 17 mild, 8 moderate, and 5 severe cases. Pathway analysis revealed that ΔHIE was associated with a 50% and 75% perturbation of tryptophan and pyrimidine metabolism respectively, alongside alterations in amino acid pathways. Significant metabolite alterations were detected from six putatively identified lipid classes including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids and prenol lipids. Outcome prediction: Metabolite model scores significantly correlated with outcome R=0.429 (model A) and R=0.549 (model B) respectively. Model B demonstrates the potential to predict both severe outcome (AUROC of 0.915) and intact survival (AUROC of 0.800). The effect of haemolysis: On average 5% of polar and 1.5% of non-polar features were altered between paired haemolysed and clean samples. However unsupervised multivariate analysis concluded that the preanalytical variability introduced by haemolysis was negligible compared with the inherent biological inter-individual variability. Conclusion This research has employed untargeted metabolomics to identify potential early cord blood biomarkers of HIE and has performed the technical validation of previously proposed markers.
Resumo:
Abstract : The major objective of our study is to investigate DNA damage induced by soft X-rays (1.5 keV) and low-energy electrons (˂ 30 eV) using a novel irradiation system created by Prof. Sanche’s group. Thin films of double-stranded DNA are deposited on either glass and tantalum substrates and irradiated under standard temperature and pressure surrounded by a N[subscript 2] environment. Base release (cytosine, thymine, adenine and guanine) and base modifications (8-oxo-7,8-dihydro -2’-deoxyguanosine, 5-hydroxymethyl-2’-deoxyuridine, 5-formyl-2’-deoxyuridine, 5,6-dihydrothymidine and 5,6-dihydro-2’-deoxy uridine) are analyzed and quantified by LC-MS/MS. Our results reveal larger damage yields in the sample deposited on tantalum than those on glass. This can be explained by an enhancement of damage due to low-energy electrons, which are emitted from the metal substrate. From a comparison of the yield of products, base release is the major type of damage especially for purine bases, which are 3-fold greater than base modifications. A proposed pathway leading to base release involves the formation of a transient negative ion (TNI) followed by dissociative electron attachment (DEA) at the N-g lycosidic bond. On the other hand, base modification products consist of two major types of chemical modifications, which include thymine methyl oxidation products that likely arises from DEA from the methyl group of thymine, and 5,6-dihydropyrimidine that can involve the initial addition of electrons, H atoms, or hydride ions to the 5,6-pyrimidine double bond.
Resumo:
Résumé : Les télomères sont des structures nucléoprotéiques spécialisées qui assurent la stabilité du génome en protégeant les extrémités chromosomiques. Afin d’empêcher des activités indésirables, la réparation des dommages à l’ADN doit être convenablement régulée au niveau des télomères. Pourtant, il existe peu d’études de la réparation des dommages induits par les ultraviolets (UVs) dans un contexte télomérique. Le mécanisme de réparation par excision de nucléotides (NER pour « Nucleotide Excision Repair ») permet d’éliminer les photoproduits. La NER est un mécanisme très bien conservé de la levure à l’humain. Elle est divisée en deux sous voies : une réparation globale du génome (GG-NER) et une réparation couplée à la transcription (TC-NER) plus rapide et plus efficace. Dans notre modèle d’étude, la levure Saccharomyces cerevisiae, une forme compactée de la chromatine nommée plus fréquemment « hétérochromatine » a été décrite. Cette structure particulière est présente entre autres, au niveau des régions sous-télomériques des extrémités chromosomiques. La formation de cette chromatine particulière implique quatre protéines nommées Sir (« Silent Information Regulator »). Elle présente différentes marques épigénétiques dont l’effet est de réprimer la transcription. L’accès aux dommages par la machinerie de réparation est-il limité par cette chromatine compacte ? Nous avons donc étudié la réparation des lésions induites par les UVs dans différentes régions associées aux télomères, en absence ou en présence de protéines Sir. Nos données ont démontré une modulation de la NER par la chromatine, dépendante des nucléosomes stabilisés par les Sir, dans les régions sous-télomériques. La NER était moins efficace dans les extrémités chromosomiques que dans les régions plus proches du centromère. Cet effet était dépendant du complexe YKu de la coiffe télomérique, mais pas dépendant des protéines Sir. La transcription télomériques pourrait aider la réparation des photoproduits, par l’intermédiaire de la sous-voie de TC-NER, prévenant ainsi la formation de mutations dans les extrémités chromosomiques. Des ARN non codants nommés TERRA sont produits mais leur rôle n’est pas encore clair. Par nos analyses, nous avons confirmé que la transcription des TERRA faciliterait la NER dans les différentes régions sous-télomériques.
Resumo:
International audience
Resumo:
Tese de Doutoramento, Química, Especialização em Química Orgânica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
Purpose: To prepare and evaluate some 2-piperidinomethylamino-4-(7-H/substitutedcoumarin-3-yl)-6- chlorosubstitutedphenyl pyrimidines as antimicrobial agents. Methods: Some 2-piperidinomethylamino-4-(7-H/substitutedcoumarin-3-yl)-6-chlorosubstitutedphenyl pyrimidines were prepared by reacting 2-amino-4-(7-H/substitutedcoumarin-3-yl)-6- (chlorosubstitutedphenyl) pyrimidines with piperidine and formaldehyde. The chemical structures of the synthesized compounds were elucidated by Fourier transform infrared (FTIR), 1H-nuclear magnetic resonance (1H-NMR), mass spectrometry and elemental analysis. These compounds were investigated for their antimicrobial activity against ten bacteria and five fungi by serial plate dilution method using standard drugs, namely, ofloxacin and ketoconazole, respectively, and their minimum inhibitory concentrations (MICs) were also determined. Results: A total of eighteen new compounds (1a-18a) were synthesized. Compound 6a (MIC = 50 μg/mL; p < 0.05 or less) displayed the highest activity against S. aureus , E. faecalis , Staphylococcus epidermidis , B. subtilis , and B. cereus . Compound 6a further showed good activity (MIC = 25 μg/mL; p < 0.05 or less) against E. coli ; P. aeruginosa K. pneumonia , B. bronchiseptica , and P. vulgaris . Compounds 6a (MIC = 25 μg/mL; p < 0.0001) and 17a (MIC = 25 μg/mL; p < 0.0001) displayed very good activity against C. albicans , A. niger , A. flavus , M. purpureous , and P. citrinum , respectively. Analysis of structure-activity relationship revealed that the presence of bromo group at 7-postion of the coumarin moiety along with the 4-chlorophenyl group at position-6 of the pyrimidine ring is critical for antimicrobial activity against Gram-positive bacteria, Gram negative bacteria and fungi. Conclusion: The synthesized 2-piperidino derivatives are better antifungal and antibacterial agents than the earlier reported 2-morpholino derivatives, but require further investigations against other microbial strains to ascertain their broad spectrum antimicrobial activity.
Resumo:
The complex and essential cell wall of Mycobacterium tuberculosis represents a plethora of new and old drug targets that collectively form an apparent mycobacterial “Achilles’ heel”. The mycolic acids are long-chain α-alkyl-β-hydroxy fatty acids (C70–90), which are unique to mycobacterial species, forming an integral component of the mycolyl–arabinogalactan–peptidoglycan complex. Their apparent uniqueness to the M. tuberculosis complex has rendered components of mycolic acid biosynthesis as powerful drug targets for specific tuberculosis (TB) chemotherapy. Here, I will discuss a contribution to TB drug discovery by deconvolution of the inhibitory mechanisms of a number of antitubercular compounds targeting mycolic acid biosynthesis. I will begin with the early days, elucidating the mode of action of ethionamide [1] and thiolactomycin [2], each targeting two separate components of the fatty acid synthase II (FAS-II) pathway. I will further discuss the recently discovered tetrahydropyrazo[1,5-a]pyrimidine-3-carboxamide compounds [3] which selectively target the essential, catalytically silent M. tuberculosis EchA6, providing a crucial lipid shunt between β-oxidation and FAS-II and supplying lipid precursors for essential mycolate biosynthesis. Finally, I will discuss the recent discovery of the mode of action of the indazole sulfonamides [4], inhibiting M. tuberculosis KasA by, a completely novel inhibitory mechanism.
Resumo:
La calcification de la valve aortique (CVA) est une maladie cardiovasculaire de plus en plus répandue, particulièrement en Amérique du Nord. Elle cause le rétrécissement de la valve aortique et le seul traitement actuellement disponible est le remplacement chirurgical. Des études menées par le Dr Patrick Mathieu (Institut de Cardiologie et de Pneumologie de Québec) ont montré qu’une surexpression d’une ectonucléotide pyrophosphatase/phosphodiestérase de type 1 (ENPP1) est à l’origine de cette sténose. Une solution à cette maladie serait donc de trouver un inhibiteur d’ENPP1. Inspirées des travaux du groupe de Pfizer visant ENPP1 pour le traitement de la chondrocalcinose articulaire et l’ostéoarthrite, quelques familles d’inhibiteurs de type quinazoline-4-pipéridine sulfamides (QPS) ont été synthétisés et testées in vitro. Une étude en modélisation moléculaire sur le site potentiel de liaison des inhibiteurs sur ENPP1 est en cours, en collaboration avec le Pr Patrick Lagüe (Université Laval, Département de biochimie, microbiologie et bio-informatique) et son équipe pour optimiser le design de la structure des composés. Les composés d’une des familles, les QPS-pyrimidine, ont été testés in vitro sur quelques lignées cellulaires cancéreuses (HT-1080, HT-29, M21 et MCF-7) pour mesurer leur activité antiproliférative. Ces composés ont une inhibition de croissance médiane (IC50) de l’ordre du micromolaire et représentent donc un point de départ intéressant pour la mise au point de nouveaux traitements anticancéreux.