976 resultados para proteolytic activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈20-kDa C-terminal fragments (CTF) and ≈30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181–190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181–190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytosolic proteolysis is carried out predominantly by the proteasome. We show that a large oligopeptidase, tripeptidylpeptidase II (TPPII), can compensate for compromised proteasome activity. Overexpression of TPPII is sufficient to prevent accumulation of polyubiquitinated proteins and allows survival of EL-4 cells at otherwise lethal concentrations of the covalent proteasome inhibitor NLVS (NIP-leu-leu-leu-vinylsulfone). Elevated TPPII activity also partially restores peptide loading of MHC molecules. Purified proteasomes from adapted cells lack the chymotryptic-like activity, but still degrade longer peptide substrates via residual activity of their Z subunits. However, growth of adapted cells depends on induction of other proteolytic activities. Therefore, cytosolic oligopeptidases such as TPPII normalize rates of intracellular protein breakdown required for normal cellular function and viability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrity of cell membranes is maintained by a balance between the amount of cholesterol and the amounts of unsaturated and saturated fatty acids in phospholipids. This balance is maintained by membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) that activate genes encoding enzymes of cholesterol and fatty acid biosynthesis. To enhance transcription, the active NH2-terminal domains of SREBPs are released from endoplasmic reticulum membranes by two sequential cleavages. The first is catalyzed by Site-1 protease (S1P), a membrane-bound subtilisin-related serine protease that cleaves the hydrophilic loop of SREBP that projects into the endoplasmic reticulum lumen. The second cleavage, at Site-2, requires the action of S2P, a hydrophobic protein that appears to be a zinc metalloprotease. This cleavage is unusual because it occurs within a membrane-spanning domain of SREBP. Sterols block SREBP processing by inhibiting S1P. This response is mediated by SREBP cleavage-activating protein (SCAP), a regulatory protein that activates S1P and also serves as a sterol sensor, losing its activity when sterols overaccumulate in cells. These regulated proteolytic cleavage reactions are ultimately responsible for controlling the level of cholesterol in membranes, cells, and blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ca2+ influx controls multiple neuronal functions including neurotransmitter release, protein phosphorylation, gene expression, and synaptic plasticity. Brain L-type Ca2+ channels, which contain either alpha 1C or alpha 1D as their pore-forming subunits, are an important source of calcium entry into neurons. Alpha 1C exists in long and short forms, which are differentially phosphorylated, and C-terminal truncation of alpha 1C increases its activity approximately 4-fold in heterologous expression systems. Although most L-type calcium channels in brain are localized in the cell body and proximal dendrites, alpha 1C subunits in the hippocampus are also present in clusters along the dendrites of neurons. Examination by electron microscopy shows that these clusters of alpha 1C are localized in the postsynaptic membrane of excitatory synapses, which are known to contain glutamate receptors. Activation of N-methyl-D-aspartate (NMDA)-specific glutamate receptors induced the conversion of the long form of alpha 1C into the short form by proteolytic removal of the C terminus. Other classes of Ca2+ channel alpha1 subunits were unaffected. This proteolytic processing reaction required extracellular calcium and was blocked by inhibitors of the calcium-activated protease calpain, indicating that calcium entry through NMDA receptors activated proteolysis of alpha1C by calpain. Purified calpain catalyzed conversion of the long form of immunopurified alpha 1C to the short form in vitro, consistent with the hypothesis that calpain is responsible for processing of alpha 1C in hippocampal neurons. Our results suggest that NMDA receptor-induced processing of the postsynaptic class C L-type Ca2+ channel may persistently increase Ca2+ influx following intense synaptic activity and may influence Ca2+-dependent processes such as protein phosphorylation, synaptic plasticity, and gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies imply that the intracellular domain of Notch1 must translocate to the nucleus for its activity. In this study, we demonstrate that a mNotch1 mutant protein that lacks its extracellular domain but retains its membrane-spanning region becomes proteolytically processed on its intracellular surface and, as a result, the activated intracellular domain (mNotchIC) is released and can move to the nucleus. Proteolytic cleavage at an intracellular site is blocked by protease inhibitors. Intracellular cleavage is not seen in cells transfected with an inactive variant, which includes the extracellular lin-Notch-glp repeats. Collectively, the studies presented here support the model that mNotch1 is proteolytically processed and the cleavage product is translocated to the nucleus for mNotch1 signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelet factor 4 (PF-4) is an archetype of the "chemokine" family of low molecular weight proteins that play an important role in injury responses and inflammation. From activated human leukocyte culture supernatants, we have isolated a form of PF-4 that acts as a potent inhibitor of endothelial cell proliferation. The PF-4 derivative is generated by peptide bond cleavage between Thr-16 and Ser-17, a site located downstream from the highly conserved and structurally important CXC motif. The unique cleavage leads to a loss of one of the structurally important large loops in the PF-4 molecule and generation of an N terminus with basic residues that have the potential to interact with the acidic extracellular domain of the G-protein-coupled chemokine receptor. The N-terminal processed PF-4 exhibited a 30- to 50-fold greater growth inhibitory activity on endothelial cells than PF-4. Since endothelial cell growth inhibition is the only known cellular activity of the cleaved PF-4, we have designated this chemokine endothelial cell growth inhibitor. The N-terminal processing of PF-4 may represent an important mechanism for modulating PF-4 activity on endothelial cells during tissue injury, inflammation, and neoplasia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteolytic, cleavage in an exposed loop of human tartrate-resistant acid phosphatase (TRAcP) with trypsin leads to a significant increase in activity. At each pH value between 3.25 and 8.0 the cleaved enzyme is more active. Substrate specificity is also influenced by proteolysis. Only the cleaved form is able to hydrolyze unactivated substrates efficiently, and at pH > 6 cleaved TRAcP acquires a marked preference for ATP. The cleaved enzyme also has altered sensitivity to inhibitors. Interestingly, the magnitude and mode of inhibition by fluoride depends not only on the proteolytic state but also pH. The combined kinetic data imply a role of the loop residue D158 in catalysis in the cleaved enzyme. Notably, at low pH this residue may act as a proton donor for the leaving group. In this respect the mechanism of cleaved TRAcP resembles that of sweet potato purple acid phosphatase. (c) 2005 Elsevier Inc. Ail rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although muscle atrophy is common to a number of disease states there is incomplete knowledge of the cellular mechanisms involved. In this study murine myotubes were treated with the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) to evaluate the role of protein kinase C (PKC) as an upstream intermediate in protein degradation. TPA showed a parabolic dose-response curve for the induction of total protein degradation, with an optimal effect at a concentration of 25 nM, and an optimal incubation time of 3 h. Protein degradation was attenuated by co-incubation with the proteasome inhibitor lactacystin (5 μM), suggesting that it was mediated through the ubiquitin-proteasome proteolytic pathway. TPA induced an increased expression and activity of the ubiquitin-proteasome pathway, as evidenced by an increased functional activity, and increased expression of the 20S proteasome α-subunits, the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating enzyme E214k, also with a maximal effect at a concentration of 25 nM and with a 3 h incubation time. There was also a reciprocal decrease in the cellular content of the myofibrillar protein myosin. TPA induced activation of PKC maximally at a concentration of 25 nM and this effect was attenuated by the PKC inhibitor calphostin C (300 nM), as was also total protein degradation. These results suggest that stimulation of PKC in muscle cells initiates protein degradation through the ubiquitin-proteasome pathway. TPA also induced degradation of the inhibitory protein, I-κBα, and increased nuclear accumulation of nuclear factor-κB (NF-κB) at the same time and concentrations as those inducing proteasome expression. In addition inhibition of NF-κB activation by resveratrol (30 μM) attenuated protein degradation induced by TPA. These results suggest that the induction of proteasome expression by TPA may involve the transcription factor NF-κB. © 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of angiotensin I (Ang I) and II (Ang II) to induce directly protein degradation in skeletal muscle has been studied in murine myotubes. Angiotensin I stimulated protein degradation with a parabolic dose-response curve and with a maximal effect between 0.05 and 0.1 μM. The effect was attenuated by coincubation with the angiotensin-converting enzyme (ACE) inhibitor imidaprilat, suggesting that angiotensin I stimulated protein degradation through conversion to Ang II. Angiotensin II also stimulated protein breakdown with a similar dose-response curve, and with a maximal effect between 1 and 2.5 μM. Total protein degradation, induced by both Ang I and Ang II, was attenuated by the proteasome inhibitors lactacystin (5 μM) and MG132 (10 μM), suggesting that the effect was mediated through upregulation of the ubiquitin-proteasome proteolytic pathway. Both Ang I and Ang II stimulated an increased proteasome 'chymotrypsin-like' enzyme activity as well as an increase in protein expression of 20S proteasome α-subunits, the 19S subunits MSSI and p42, at the same concentrations as those inducing protein degradation. The effect of Ang I was attenuated by imidaprilat, confirming that it arose from conversion to Ang II. These results suggest that Ang II stimulates protein degradation in myotubes through induction of the ubiquitin-proteasome pathway. Protein degradation induced by Ang II was inhibited by insulin-like growth factor and by the polyunsaturated fatty acid, eicosapentaenoic acid. These results suggest that Ang II has the potential to cause muscle atrophy through an increase in protein degradation. The highly lipophilic ACE inhibitor imidapril (Vitor™) (30 mg kg-1) attenuated the development of weight loss in mice bearing the MAC16 tumour, suggesting that Ang II may play a role in the development of cachexia in this model. © 2005 Cancer Research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cysteine protease cathepsin C (CatC) activates granule-associated proinflammatory serine proteases in hematopoietic precursor cells. Its early inhibition in the bone marrow is regarded as a new therapeutic strategy for treating proteolysis-driven chronic inflammatory diseases, but its complete inhibition is elusive in vivo Controlling the activity of CatC may be achieved by directly inhibiting its activity with a specific inhibitor or/and by preventing its maturation. We have investigated immunochemically and kinetically the occurrence of CatC and its proform in human hematopoietic precursor cells and in differentiated mature immune cells in lung secretions. The maturation of proCatC obeys a multistep mechanism that can be entirely managed by CatS in neutrophilic precursor cells. CatS inhibition by a cell-permeable inhibitor abrogated the release of the heavy and light chains from proCatC and blocked ∼80% of CatC activity. Under these conditions the activity of neutrophil serine proteases, however, was not abolished in precursor cell cultures. In patients with neutrophilic lung inflammation, mature CatC is found in large amounts in sputa. It is secreted by activated neutrophils as confirmed through lipopolysaccharide administration in a nonhuman primate model. CatS inhibitors currently in clinical trials are expected to decrease the activity of neutrophilic CatC without affecting those of elastase-like serine proteases.