972 resultados para protein weight
Resumo:
Long-term treatment with clomipramine (CMI), a tricyclic antidepressant, induces food craving and body weight gain in patients. The present study investigated the effects of chronic treatment with CMI on total food intake, macronutrient selection, and body weight gain in rats. Male Wistar rats were maintained on a dietary self-selection regime with separate sources of protein, fat and carbohydrate. Animals received i.p. injections of CMI (0, 3, 10, 30 mg/kg) during 27 consecutive days. Food consumption and body weight were recorded daily and results were calculated as average of three consecutive days, namely during pre-treatment (3 d before pharmacological treatment), treatment (7th-9th; l6th-l8th and 25th-27th days), and post-treatment (28th-33rd days). Results showed that CMI (30 mg/kg) significantly decreased energy intake during all treatment period, an effect that was related to a decrease in both carbohydrate-rich diet intake and body weight gain. At dose of 3 mg/kg CMI increased the total energy intake in the 16th-18th days, suggesting an apparent biphasic effect of chronic treatment with CMI on caloric intake. Chronic administration with CMI (27 d) did not alter protein-rich or fat-rich diet consumption. The main result of this study indicated that chronic treatment with CMI decreases rather than increase food consumption and body weight gain in rats exposed to a macronutrient self-selection procedure.
Resumo:
Malnutrition is a common health problem in developing countries and is associated with alterations in glucose metabolism. In the present study we examine the effects of chronic aerobic exercise on some aspects of glucose metabolism in protein-deficient rats. Two groups of adult rats (90 days old) were used: Normal protein group (17%P)- kept on a normal protein diet during intra-uterine and postnatal life and Low protein group (6%P)- kept on a low protein diet during intrauterine and post natal life. After weaning (21 days old), half of the 17%P and 6%P rats were assigned to a Sedentary (Sed) or an Exercise-trained (Exerc = swimming, 1 hr/day, 5 days/week, supporting an overload of 5% of body weight) subgroup. The area under blood glucose concentration curve (Delta G) after an oral glucose load was higher in 17%P Sed rats (20%) than in other rats and lower in 6%P Exerc (11%) in relation to 6% Sed rats. The post-glucose increase in blood insulin (Delta I) was also higher in 17%P Sed (9%) than in other rats. on the other hand, the glucose disappearance rate after exogenous subcutaneous insulin administration (Kitt) was lower in 17%P Sed rats (66%) than in other rats. Glucose uptake by soleus muscle was higher in Exerc rats (30%) than in Sed rats. Soleus muscle glycogen synthesis was reduced in 6%P Sed rats (41%) compared to 17%P Sed rats but was restored in 6%P Exerc rats. Glycogen concentration was elevated in Exerc (32%) rats in comparison to Sed rats. The present results indicate that glucose-induced insulin release is reduced in rats fed low protein diet. This defect is counteracted by an increase in the sensitivity of the target tissues to insulin and glucose homeostasis is maintained. This adaptation allows protein deficient rats to preserve the ability to appropriately adapt to aerobic physical exercise training. (C) 2000 Elsevier B.V.
Resumo:
The objective of the present study was to investigate the effects of dietary macronutrient ratio on energy metabolism and on skeletal muscle mRNA expression of avian uncoupling protein (UCP), thought to be implicated in thermogenesis in birds. Broiler chickens from 2 to 6 weeks of age received one of three isoenergetic diets containing different macronutrient ratios (low-lipid (LL) 30 v. 77 g lipid/kg-, low-protein (LP) 125 v. 197 g crude protein (N X 6.25)/kg; low-carbohydrate (LC) 440 v. 520 g carbohydrate/kg). LP chickens were characterised by significantly lower body weights and food intakes compared with LL and LC chickens (-47 and -38% respectively) but similar heat production/kg metabolic body weight, as measured by indirect calorimetry, in the three groups. However, heat production/g food ingested was higher in animals receiving the LP diet (+41%, P<0.05). These chickens also deposited 57% less energy as protein (P<0.05) and 33% more as fat. No significant differences in energy and N balances were detected between LL and LC chickens. The diets with the higher fat contents (i.e. The LP and LC diets) induced slightly but significantly higher relative expressions of avian UCP mRNA in gastrocnemius muscle, measured by reverse transcription-polymerase chain reaction, than the LL diet (88 and 90 v. 78% glyceraldehyde-3-phosphate dehydrogenase respectively, P<0.05). Our present results are consistent with the recent view that UCP homologues could be involved in the regulation of lipid utilisation as fuel substrate and provide evidence that the macronutrient content of the diet regulates energy metabolism and especially protein and fat deposition.
Resumo:
In order to determine the net energy, protein and macrominerals requirements of 70 to 120 day old, 52 female White New Zealand rabbits, weighing 1900g +/- 40g were used. At the beginning of the experimental period, 14 of the 52 young does were slaughtered and the 38 remaining animals were kept under two dietary management: ad libitum and restricted feeding. Slaughters were performed to determine each nutrient body content. The weight gain nutrient requirements depicted by the quantities of each nutrient stored into the body were obtained by applying the regression equation, which estimate the empty body nutrient content logarithm as a function of the empty body weight logarithm, as described by ARC (1980). By determining the heat production logarithm at the zero level of metabolizable energy intake, the maintenance net energy requirement was estimated to be 45.31 Kcal/day/Kg(0.75) the mean net energy. protein, calcium, phosphorous, sodium, magnesium and potassium requirements for each gram of weight gain per day were estimated to be, 2.51 Kcal, 0.21g, 0.02g, 0.005g, 0.001g, 0.0004g and 0.002g, respectively.
Resumo:
This study was undertaken in a closed system with Nile tilapia (Oreochromis niloticus) to examine the effects of total replacement of fish meal (FM) by soybean meal. Nile tilapia fingerlings with an average weight of 5.34+/-0.08 g were hand-fed one of the five isoenergetic (approximate to13.5 MJ digestible energy kg(-1)) and isoproteic (approximate to31% of digestible protein) experimental diets to satiation, six times a day during 85 days in eight replicate fibreglass tanks (six fish per tank). The control diet containing FM was substituted by soybean meal, with and without essential amino acids (lysine, methionine and threonine) or dicalcium phosphate supplementation. The supplemental amino acids were added at levels to simulate the reference amino acid profile of Nile tilapia carcass protein, based on the ideal protein concept. The results showed that soybean meal diet supplemented only with dicalcium phosphate was inferior to the control diet with FM and soybean meal diets supplemented with dicalcium phosphate and essential amino acids. Multiple essential amino acids and dicalcium phosphate incorporation in soybean meal diets was associated with performance, whole-body composition and carcass yield equal to that of the fish fed with the control diet containing FM. These data suggest that a diet with all plant protein source, supplemented with essential amino acids, based on tissue amino acid profile, can totally replace FM in a diet for Nile tilapia, without adverse effects on the growth performance, carcass yield and composition.
Resumo:
The effect of intrauterine and postnatal protein-calorie malnutrition on the biochemical ability to perform exercise was investigated in young male rats. Malnourished rats were obtained by feeding dams a low-protein (6%) casein-based diet prepared in the laboratory during pregnancy and lactation. Control rats received an isocaloric diet containing 25% protein. The low-protein diet contained additional starch and glucose. At 45 days of age, malnourished rats showed lower body weight, serum protein, albumin and glucose levels, hematocrit values and heart glycogen content but higher circulating free fatty acids and gastrocnemius muscle glycogen than control rats. In response to exercise (50 min of swimming), control rats displayed lower heart, gastrocnemius and liver glycogen levels whereas malnourished rats showed low glycogen levels only in the gastrocnemius muscle. Both control and malnourished rats showed high serum glucose and free fatty acid levels after exercise. In conclusion, protein-calorie malnutrition improved muscle glycogen storage but this substrate was broken down to a greater extent in response to exercise. Malnourished rats were able to perform exercise maintaining high blood glucose levels, as observed in control rats, perhaps as a consequence of the elevated availability of circulating free fatty acids.
Resumo:
We studied glucose homeostasis in rat pups from darns fed on a normal-protein (170 g/kg) (NP) diet or a diet containing 60 g protein/kg (LP) during fetal life and the suckling period. At birth, total serum protein, serum albumin and serum insulin levels were similar in both groups. However, body weight and serum glucose levels in LP rats were lower than those in NP rats. At the end of the suckling period (28 d of age), total serum protein, serum albumin and serum insulin were significantly lower and the liver glycogen and serum free fatty acid levels were significantly higher in LP rats compared with NP rats. Although the fasting serum glucose level was similar in both groups, the area under the blood glucose concentration curve after a glucose load was higher for NP rats (859 (SEM 58) mmol/l per 120 min for NP rats v. 607 (SEM 52) mmol/l per 120 min for LP rats; P < 0.005). The mean post-glucose increase in insulin was higher for NP rats (30 (SEM 4.7) nmol/l per 120 min for NP rats v. 17 (SEM 3.9) nnol/l per 120 min for LP rats; P < 0.05). The glucose disappearance rate for NP rats(0.7 (SEM 0.1) %/min) was lower than that for LP rats (1.6 (SEM 0.2) %/min; P < 0.001). Insulin secretion from isolated islets (1 h incubation) in response to 16.7 mmol glucose/l was augmented 14-fold in NP rats but only 2.6-fold in LP rats compared with the respective basal secretion (2.8 mmol/l; P <0.001). These results indicate that in vivo as well as in vitro insulin secretion in pups from dams maintained on a LP diet is reduced. This defect may be counteracted by an increase in the sensitivity of target tissues to insulin.
Resumo:
Objective-To determine whether plasma protein concentrations were altered in ponies with alimentary laminitis.Animals-12 adult ponies.Procedure-Acute laminitis was induced in 6 ponies by oral administration of carbohydrate (85% corn starch, 15% wood flour); the other 6 ponies were used as controls. A physical examination was performed and blood samples were collected immediately before and 4, 8, 12, 24, and 28 hours after administration of carbohydrate. Plasma protein concentrations were determined by means of sodium dodecyl sulphate-polyacrylamide gel electrophoresis.Results-19 plasma proteins ranging from a molecular weight of 24,000 to a molecular weight of 350,000 were identified in all 12 ponies. Plasma concentrations of proteins with molecular weights of 350,000 (fibrinogen), 130,000 (ceruloplasmin), 118,000 (c-reactive protein), 67,000 (alpha(1)-antitrypsin I), 65,000 (alpha(1)-antitrypsin II), 50,000 (haptoglobulin), and 45,000 (acid glycoprotein) were significantly increased in ponies with laminitis, compared with concentrations in control ponies.Conclusion-Changes in plasma protein concentrations are detectable within 4 hours after the onset of alimentary laminitis in ponies.Clinical Relevance-Measurement of plasma protein concentrations may be useful in monitoring the progression of laminitis in ponies.
Resumo:
In this work, siloxane-poly(propylene oxide) discs (PPO disc) prepared using the sol-gel process were used as solid phase in enzyme-linked immunosorbent assays (ELISA) for the detection of anti-hepatitis C virus (HCV) antibodies. The HCV RNA from serum (genotype 1b) was submitted to the RT-PCR technique and subsequent amplification of the HCV core 408 pb. This fragment was cloned into expression vector pET42a and expressed in Escherichia coli as recombinant protein with glutathione S-transferase (GST). Cell cultures were grown and induced having a final concentration of 0.4 x 10(-3) mol L-1 of IPTG. After induction, the cells were harvested and the soluble fraction was analyzed using polyacrilamide gel 15% showing a band with an approximate molecular weight of 44 kDa, the expected size for this GST-fused recombinant protein. The recombinant protein was purified and continued by immunological detection using HCV-positive serum and showed no cross-reactivity with positive samples for other infectious diseases. An ELISA was established using 1.25 ng of recombinant protein per PPO disc, a dilution of 1: 10,000 and 1:40 for a peroxidase conjugate and serum, respectively, and solutions of hydrogen peroxide and 3,3',5,5'-tetra-methylbenzidine in a ratio of 1: 1. The proposed methodology was compared with the ELISA conventional polystyrene-plate procedure and the performance of the PPO discs as a matrix for immunodetection gave an easy synthesis, good performance and reproducibility for commercial application. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the effects of balanced diets on the maturation of oocytes and the reproductive performance of P. mesopotamicus in cages. A completely random design with 224 fish in 16 cages measuring 5 m(3) was employed for this purpose. The treatments consisted of diets containing 18, 24, 30, and 36% crude protein (CP) provided ad libitum. The external and internal morphological characteristics of the specimens were examined, as well as: the position of the germinal vesicle, the distribution of oocyte diameters, the fertilization and hatching rates, the number of oocytes released, the total number of oocytes, the remaining weight and total weight of the ovaries, the gonadosomatic index, the condition factor (K), and the histology of the oocytes and ovaries post-spawning and during ovarian regression. The diameters of the oocytes collected before the first hormonal application displayed a unimodal distribution for the lowest protein content and a polymodal distribution for the other treatments. A similar situation was seen during spawning. The lowest fertilization and hatching rates were found as a consequence of the treatment with 30% CP (P < 0.05). The greatest hatching rate occurred in the females fed 18% CP. The greatest total oocyte weight was found in the specimens that received between 30 and 36% CP. The lowest K index was found in the females fed 36% CP. In conclusion, a diet containing 18% CP satisfies the reproductive requirements of females adapted to this system.
Resumo:
Four groups of 10 young adult Wistar male rats were fed ad libitum on a protein-free diet for periods of 7, 28, 56 and 84 days. Control groups were fed on a 20% casein diet. Food intake and body weights of rats were registered. Plasma protein levels and liver weight and fat content were determined. Sections of the caudate lobe were studied histologically. Fatty changes were classified in three grades. Protein-deficient rats exhibited loss of body weight and had low levels of plasma protein concentration. Liver lost weight after 7 days of protein deficiency; there was a gradual reduction in liver weight as periods of protein deprivation were longer. After 7 days, liver fat concentration was not significantly higher than in the respective control group; it was significantly higher in all the other malnourished animals, As periods of protein deprivation were longer, fatty changes became more severe. Other hepatic lesions were found in 5 of the 10 rats submitted to the longest period of protein deficiency. One of the rats showed a diffuse cellular atrophy, 2 animals showed an extensive haemorrhagic necrosis, another showed a focal area of reticulum collapse and the last exhibited a distortion of the normal architecture of the liver due to diffuse reticulum collapse and early nodular regeneration; these 2 last rats showed early fibrosis in portal areas. The findings suggest that other deficiencies may complicate the protein deficiency when rats are given a protein-free diet over prolonged periods. Even if the protein-deficient diet has protective nutrients, it may be that, when rats eat less food, as occurs in prolonged experiments deficiency of one or all of these elements can occur, depending on their relative amount in diet.
Resumo:
Linear and stereological morphometric methods were applied to the jejunal and ileal mucosa of young, adult, and old male Wistar rats submitted to protein deficiency and rehabilitation. The animals were fed ad libitum a 2% casein diet during 42 days and then received a 20% casein diet for 30 days. Food intake, body weights, and plasma protein concentrations were recorded. In the young protein deficient rats values of mucosal height, surface area, and volume of the lamina propria were significantly lower than those of their age controls in both jejunum and ileum. In adults the differences were less marked and in the old rats all parameters were found to be unaltered by the protein deficient diet. The surface-to-volume ratio showed no significant differences between control and protein deficient in all three age groups, meaning that villus pattern did not change with protein deficiency. On rehabilitation, a striking difference between jejunum and ileum was observed in the young rats; all parameters returned to control levels in the jejunum, while they remained lower than those of their controls in the ileum.
Resumo:
The 43,000-molecular-weight (43K) soluble glycoprotein was detected in sera of patients with paracoccidioidomycosis by the immunoblot technique by using as the probe rabbit monospecific antisera to this fraction. The 43K antigen was present before treatment in sera of patients with the acute (juvenile) form; it started to disappear from circulation after 10 months of chemotherapy, and it was undetectable afer 2 years of treatment. In the chronic cases, the 43K antigen was detected in patients without treatment, and it was absent in the healed cases. The detection of the 43K protein specific to Paracoccidioides brasiliensis may be important for its diagnostic value as well as for modulation of the host immune response.
Resumo:
The individual effects of protein deficiency and energy restriction on liver response to low-hexachlorobenzene (HCB) exposure were investigated in adult male Wistar rats. In rats fed either the low-protein or control diet, the only effect caused by HCB was a decrease in paralysis time following an ip injection of zoxazolamine. This decrease was similar for both groups. In the animals subjected to energy restriction, HCB induced a greater decrease in paralysis time, an increase in the size of centrilobular hepatocytes, a lower liver DNA content and an increased concentration of HCB in the adipose tissue, compared with the control and protein-deficient groups. Our data suggest that energy restriction increases liver response to HCB, while protein deficiency does not impair the hepatic reaction to small doses of HCB exposure.
Resumo:
In vitro rates of overall proteolysis and the activities of four different proteolytic pathways (lysosomal, Ca2+ dependent, ATP dependent, and ATP independent), as well as rates of protein synthesis, were measured in soleus and extensor digitorum longus (EDL) muscles from streptozotocin- diabetic rats. In the acute phase (1-3 days) of diabetes, there was an increase in overall proteolysis that coincided with an increased activity of the Ca2+-dependent pathway in both soleus and EDL and of the ATP-dependent pathway in EDL. After longer periods (5-10 days) of diabetes, the overall rate of protein degradation decreased and reached values similar to or even lower than those of controls as a result of a reduction in the activities of Ca2+-dependent and ATP-dependent pathways. No change was detected at any time interval in the activity of the intralysosomal proteolytic system in muscles from diabetic animals. Rates of protein synthesis were already reduced 24 h after diabetes induction and decreased further thereafter. Insulin treatment restored to normal the activities of the proteolytic pathways and rates of protein synthesis.