984 resultados para porous space
Resumo:
A body of research in conversation analysis has identified a range of structurally-provided positions in which sources of trouble in talk-in-interaction can be addressed using repair. These practices are contained within what Schegloff (1992) calls the repair space. In this paper, I examine a rare instance in which a source of trouble is not resolved within the repair space and comes to be addressed outside of it. The practice by which this occurs is a post-completion account; that is, an account that is produced after the possible completion of the sequence containing a source of trouble. Unlike fourth position repair, the final repair position available within the repair space, this account is not made in preparation for a revised response to the trouble-source turn. Its more restrictive aim, rather, is to circumvent an ongoing difference between the parties involved. I argue that because the trouble is addressed in this manner, and in this particular position, the repair space can be considered as being limited to the sequence in which a source of trouble originates.
Resumo:
We develop a fast Poisson preconditioner for the efficient numerical solution of a class of two-sided nonlinear space fractional diffusion equations in one and two dimensions using the method of lines. Using the shifted Gr¨unwald finite difference formulas to approximate the two-sided(i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local property of fractional derivatives. We employ a modern initial value problem solver utilising backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve these systems. For efficient performance of the Jacobianfree Newton-Krylov method it is essential to apply an effective preconditioner to accelerate the convergence of the linear iterative solver. The key contribution of our work is to generalise the fast Poisson preconditioner, widely used for integer-order diffusion equations, so that it applies to the two-sided space fractional diffusion equation. A number of numerical experiments are presented to demonstrate the effectiveness of the preconditioner and the overall solution strategy.
Resumo:
The method of lines is a standard method for advancing the solution of partial differential equations (PDEs) in time. In one sense, the method applies equally well to space-fractional PDEs as it does to integer-order PDEs. However, there is a significant challenge when solving space-fractional PDEs in this way, owing to the non-local nature of the fractional derivatives. Each equation in the resulting semi-discrete system involves contributions from every spatial node in the domain. This has important consequences for the efficiency of the numerical solver, especially when the system is large. First, the Jacobian matrix of the system is dense, and hence methods that avoid the need to form and factorise this matrix are preferred. Second, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. In this paper, we show how an effective preconditioner is essential for improving the efficiency of the method of lines for solving a quite general two-sided, nonlinear space-fractional diffusion equation. A key contribution is to show, how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
We consider a two-dimensional space-fractional reaction diffusion equation with a fractional Laplacian operator and homogeneous Neumann boundary conditions. The finite volume method is used with the matrix transfer technique of Ilić et al. (2006) to discretise in space, yielding a system of equations that requires the action of a matrix function to solve at each timestep. Rather than form this matrix function explicitly, we use Krylov subspace techniques to approximate the action of this matrix function. Specifically, we apply the Lanczos method, after a suitable transformation of the problem to recover symmetry. To improve the convergence of this method, we utilise a preconditioner that deflates the smallest eigenvalues from the spectrum. We demonstrate the efficiency of our approach for a fractional Fisher’s equation on the unit disk.
Resumo:
Supervision in the creative arts is a topic of growing significance since the increase in creative practice PhDs across universities in Australasia. This presentation will provide context of existing discussions in creative practice and supervision. Creative practice – encompassing practice-based or practice-led research – has now a rich history of research surrounding it. Although it is a comparatively new area of knowledge, great advances have been made in terms of how practice can influence, generate, and become research. The practice of supervision is also a topic of interest, perhaps unsurprisingly considering its necessity within the university environment. Many scholars have written much about supervision practices and the importance of the supervisory role, both in academic and more informal forms. However, there is an obvious space in between: there is very little research on supervision practices within creative practice higher degrees, especially at PhD or doctorate level. Despite the existence of creative practice PhD programs, and thus the inherent necessity for successful supervisors, there remain minimal publications and limited resources available. Creative Intersections explores the existing publications and resources, and illustrates that a space for new published knowledge and tools exists.
Resumo:
We applied small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) to monitor evolution of the CO2 adsorption in porous silica as a function of CO2 pressure and temperature in pores of different sizes. The range of pressures (0 < P < 345 bar) and temperatures (T=18 OC, 35 OC and 60 OC) corresponded to subcritical, near critical and supercritical conditions of bulk fluid. We observed that the adsorption behavior of CO2 is fundamentally different in large and small pores with the sizes D > 100 Å and D < 30 Å, respectively. Scattering data from large pores indicate formation of a dense adsorbed film of CO2 on pore walls with the liquid-like density (ρCO2)ads≈0.8 g/cm3. The adsorbed film coexists with unadsorbed fluid in the inner pore volume. The density of unadsorbed fluid in large pores is temperature and pressure dependent: it is initially lower than (ρCO2)ads and gradually approaches it with pressure. In small pores compressed CO2 gas completely fills the pore volume. At the lowest pressures of the order of 10 bar and T=18 OC, the fluid density in smallest pores available in the matrix with D ~ 10 Å exceeds bulk fluid density by a factor of ~ 8. As pressure increases, progressively larger pores become filled with the condensed CO2. Fluid densification is only observed in pores with sizes less than ~ 25 – 30 Å. As the density of the invading fluid reaches (ρCO2)bulk~ 0.8 g/cm3, pores of all sizes become uniformly filled with CO2 and the confinement effects disappear. At higher densities the fluid in small pores appears to follow the equation of state of bulk CO2 although there is an indication that the fluid density in the inner volume of large pores may exceed the density of the adsorbed layer. The equivalent internal pressure (Pint) in the smallest pores exceeds the external pressure (Pext) by a factor of ~ 5 for both sub- and supercritical CO2. Pint gradually approaches Pext as D → 25 – 30 Å and is independent of temperature in the studied range of 18 OC ≤ T ≤ 60 OC. The obtained results demonstrate certain similarity as well as differences between adsorption of subcritical and supercritical CO2 in disordered porous silica. High pressure small angle scattering experiments open new opportunities for in situ studies of the fluid adsorption in porous media of interest to CO2 sequestration, energy storage, and heterogeneous catalysis.
Resumo:
The lack of an obvious “band gap” is a formidable hurdle for making a nanotransistor from graphene. Here, we use density functional calculations to demonstrate for the first time that porosity such as evidenced in recently synthesized porous graphene (http://www.sciencedaily.com/releases/2009/11/091120084337.htm) opens a band gap. The size of the band gap (3.2 eV) is comparable to most popular photocatalytic titania and graphitic C3N4 materials. In addition, the adsorption of hydrogen on Li-decorated porous graphene is much stronger than that in regular Li-doped graphene due to the natural separation of Li cations, leading to a potential hydrogen storage gravimetric capacity of 12 wt %. In light of the most recent experimental progress on controlled synthesis, these results uncover new potential for the practical application of porous graphene in nanoelectronics and clean energy.
Resumo:
Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.
Resumo:
Three porous amorphous silica minerals, including diatomite, opal and porous precipitated SiO2wereadopted to prepare supported TiO2catalysts by hydrolysis–deposition method. The prepared compoundmaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fouriertransform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Through morphology and physical chemistry properties of the resultingTiO2/amorphous SiO2catalysts, it was proposed that the nature of silica supports could affect the particlesize and the crystal form of TiO2and then further influence the photocatalytic property of TiO2/amorphousSiO2catalysts. The catalytic properties of these porous amorphous silica supported photocatalysts(TiO2/SiO2) were investigated by UV-assisted degradation of Rhodamine B (RhB). Compared with pureTiO2(P25) and the other two TiO2/amorphous SiO2catalysts, TiO2/diatomite photocatalyst exhibits bet-ter catalytic performance at different calcined temperatures, the decoloration rate of which can be upto over 85% even at a relatively low calcined temperature. The TiO2/diatomite photocatalyst possessesmixed-phase TiO2with relatively smaller particles size, which might be responsible for higher photo-catalytic activity. Moreover, the stable and much inerter porous microstructure of diatomite could beanother key factor in improving its activity.
Resumo:
ZIF-8 thin layer has been synthesized on the asymmetric porous polyethersulfone (PES) substrate via secondary seeded growth. Continuous and dense ZIF-8 layer, containing microcavities, has good affinity with the PES support. Single gas permeance was measured for H2, N2, CH4, O2, and Ar at different pressure gradients and temperatures. Molecular sieving separation has been achieved for selectively separating hydrogen from larger gases. At 333 K, the H2 permeance can reach ∼4 × 10−7 mol m−2 s−1 Pa−1, and the ideal separation factors of H2 from Ar, O2, N2, and CH4 are 9.7, 10.8, 9.9, and 10.7, respectively. Long-term hydrogen permeance and H2/N2 separation performance show the stable permeability of the derived membranes.
Resumo:
Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.
Resumo:
An important subset of extraterrestrial particles that reach the Earth's stratosphere include the so-called Chondritic Porous Aggregates (CPA's) [1-3]. In general, CPA's have a fluffy morphology and consist of numerous (>104)subparticles that are often <100A in size [4]. Mineral species in CPA's include Mg-rich pyroxene and olivine, Fe- and (Fe,Ni)-sulphides, taenite, Fe,Ni-carbides, magnetite, Ti-metal, a Bi-phase (metal or oxide), and variable amounts of carbonaceous material [1, 5-7]. Hydrated silicates are rare in CPA's and are limited to aggregates that have not been severely altered (thermo-metamorphosed) during atmospheric entry [8]. The presence of hydrated silicates in one cosmic dust particle was established by X-ray diffraction [2] and has been inferred in others by infra-red spectroscopy [8]. If CPA's are cometary, their mineralogy and morphology suggest that at least two episodes of aggregation occurred and that variations in porosity may be related to local differences in ice-to-dust ratio [3].
Resumo:
Collections of solid particles from the Earths' stratosphere have been a significant part of atmospheric research programs since 1965 [1], but it has only been in the past decade that space-related disciplines have provided the impetus for a continued interest in these collections. Early research on specific particle types collected from the stratosphere established that interplanetary dust particles (IDP's) can be collected efficiently and in reasonable abundance using flat-plate collectors [2-4]. The tenacity of Brownlee and co-workers in this subfield of cosmochemistry has led to the establishment of a successful IDP collection and analysis program (using flat-plate collectors on high-flying aircraft) based on samples available for distribution from Johnson Space Center [5]. Other stratospheric collections are made, but the program at JSC offers a unique opportunity to study well-documented, individual particles (or groups of particles) from a wide variety of sources [6]. The nature of the collection and curation process, as well as the timeliness of some sampling periods [7], ensures that all data obtained from stratospheric particles is a valuable resource for scientists from a wide range of disciplines. A few examples of the uses of these stratospheric dust collections are outlined below.
Resumo:
In this paper, we consider a space fractional advection–dispersion equation. The equation is obtained from the standard advection–diffusion equation by replacing the first- and second-order space derivatives by the Riesz fractional derivatives of order β1 ∈ (0, 1) and β2 ∈ (1, 2], respectively. The fractional advection and dispersion terms are approximated by using two fractional centred difference schemes. A new weighted Riesz fractional finite-difference approximation scheme is proposed. When the weighting factor θ equals 12, a second-order accuracy scheme is obtained. The stability, consistency and convergence of the numerical approximation scheme are discussed. A numerical example is given to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
Transport processes within heterogeneous media may exhibit non-classical diffusion or dispersion; that is, not adequately described by the classical theory of Brownian motion and Fick's law. We consider a space fractional advection-dispersion equation based on a fractional Fick's law. The equation involves the Riemann-Liouville fractional derivative which arises from assuming that particles may make large jumps. Finite difference methods for solving this equation have been proposed by Meerschaert and Tadjeran. In the variable coefficient case, the product rule is first applied, and then the Riemann-Liouville fractional derivatives are discretised using standard and shifted Grunwald formulas, depending on the fractional order. In this work, we consider a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Grunwald formulas are used to discretise the fractional derivatives at control volume faces. We compare the two methods for several case studies from the literature, highlighting the convenience of the finite volume approach.