506 resultados para polyurethane
Resumo:
PURPOSE: Malignant ureteral obstruction often necessitates chronic urinary diversion and is associated with high rates of failure with traditional ureteral stents. We evaluated the outcomes of a metallic stent placed for malignant ureteral obstruction and determined the impact of risk factors previously associated with increased failure rates of traditional stents. MATERIALS AND METHODS: Patients undergoing placement of the metallic Resonance® stent for malignant ureteral obstruction at an academic referral center were identified retrospectively. Stent failure was defined as unplanned stent exchange or nephrostomy tube placement for signs or symptoms of recurrent ureteral obstruction (recurrent hydroureteronephrosis or increasing creatinine). Predictors of time to stent failure were assessed using Cox regression. RESULTS: A total of 37 stents were placed in 25 patients with malignant ureteral obstruction. Of these stents 12 (35%) were identified to fail. Progressive hydroureteronephrosis and increasing creatinine were the most common signs of stent failure. Three failed stents had migrated distally and no stents required removal for recurrent infection. Patients with evidence of prostate cancer invading the bladder at stent placement were found to have a significantly increased risk of failure (HR 6.50, 95% CI 1.45-29.20, p = 0.015). Notably symptomatic subcapsular hematomas were identified in 3 patients after metallic stent placement. CONCLUSIONS: Failure rates with a metallic stent are similar to those historically observed with traditional polyurethane based stents in malignant ureteral obstruction. The invasion of prostate cancer in the bladder significantly increases the risk of failure. Patients should be counseled and observed for subcapsular hematoma formation with this device.
Resumo:
Although the release of nitric oxide (NO) from biomaterials has been shown to reduce the foreign body response (FBR), the optimal NO release kinetics and doses remain unknown. Herein, polyurethane-coated wire substrates with varying NO release properties were implanted into porcine subcutaneous tissue for 3, 7, 21 and 42 d. Histological analysis revealed that materials with short NO release durations (i.e., 24 h) were insufficient to reduce the collagen capsule thickness at 3 and 6 weeks, whereas implants with longer release durations (i.e., 3 and 14 d) and greater NO payloads significantly reduced the collagen encapsulation at both 3 and 6 weeks. The acute inflammatory response was mitigated most notably by systems with the longest duration and greatest dose of NO release, supporting the notion that these properties are most critical in circumventing the FBR for subcutaneous biomedical applications (e.g., glucose sensors).
Resumo:
Inflammation and the formation of an avascular fibrous capsule have been identified as the key factors controlling the wound healing associated failure of implantable glucose sensors. Our aim is to guide advantageous tissue remodeling around implanted sensor leads by the temporal release of dexamethasone (Dex), a potent anti-inflammatory agent, in combination with the presentation of a stable textured surface.
First, Dex-releasing polyurethane porous coatings of controlled pore size and thickness were fabricated using salt-leaching/gas-foaming technique. Porosity, pore size, thickness, drug release kinetics, drug loading amount, and drug bioactivity were evaluated. In vitro sensor functionality test were performed to determine if Dex-releasing porous coatings interfered with sensor performance (increased signal attenuation and/or response times) compared to bare sensors. Drug release from coatings monitored over two weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture.
The tissue modifying effects of Dex-releasing porous coatings were accessed by fully implanting Tygon® tubing in the subcutaneous space of healthy and diabetic rats. Based on encouraging results from these studies, we deployed Dex-releasing porous coatings from the tips of functional sensors in both diabetic and healthy rats. We evaluated if the tissue modifying effects translated into accurate, maintainable and reliable sensor signals in the long-term. Sensor functionality was accessed by continuously monitoring glucose levels and performing acute glucose challenges at specified time points.
Sensors treated with porous Dex-releasing coatings showed diminished inflammation and enhanced vascularization of the tissue surrounding the implants in healthy rats. Functional sensors with Dex-releasing porous coatings showed enhanced sensor sensitivity over a 21-day period when compared to controls. Enhanced sensor sensitivity was accompanied with an increase in sensor signal lag and MARD score. These results indicated that Dex-loaded porous coatings were able to elicit a favorable tissue response, and that such tissue microenvironment could be conducive towards extending the performance window of glucose sensors in vivo.
The diabetic pilot animal study showed differences in wound healing patters between healthy and diabetic subjects. Diabetic rats showed lower levels of inflammation and vascularization of the tissue surrounding implants when compared to their healthy counterparts. Also, functional sensors treated with Dex-releasing porous coatings did not show enhanced sensor sensitivity over a 21-day period. Moreover, increased in sensor signal lag and MARD scores were present in porous coated sensors regardless of Dex-loading when compared to bare implants. These results suggest that the altered wound healing patterns presented in diabetic tissues may lead to premature sensor failure when compared to sensors implanted in healthy rats.
Resumo:
The variety of wound types has resulted in a wide range of wound dressings with new products frequently introduced to target different aspects of the wound healing process. The ideal dressing should achieve rapid healing at reasonable cost with minimal inconvenience to the patient. This article offers a review of the common wound management dressings and emerging technologies for achieving improved wound healing. It also reviews many of the dressings and novel polymers used for the delivery of drugs to acute, chronic and other types of wound. These include hydrocolloids, alginates, hydrogels, polyurethane, collagen, chitosan, pectin and hyaluronic acid. There is also a brief section on the use of biological polymers as tissue engineered scaffolds and skin grafts. Pharmacological agents such as antibiotics, vitamins, minerals, growth factors and other wound healing accelerators that take active part in the healing process are discussed. Direct delivery of these agents to the wound site is desirable, particularly when systemic delivery could cause organ damage due to toxicological concerns associated with the preferred agents. This review concerns the requirement for formulations with improved properties for effective and accurate delivery of the required therapeutic agents. General formulation approaches towards achieving optimum physical properties and controlled delivery characteristics for an active wound healing dosage form are also considered briefly.
Resumo:
The associated problems of bacterial biofilm formation and encrustation that may cause obstruction or blockage of urethral catheters and ureteral stents often hinders the effective use of biomaterials within the urinary tract. In this in vitro study, we have investigated the surface properties of a hydrophilic polyvinyl pyrollidone) (PVP)-coating applied to polyurethane and determined its suitability for use as a urinary tract biomaterial by comparing its lubricity and ability to resist bacterial adherence and encrustation with that of uncoated polyurethane and silicone. The PVP-coated polyurethane was significantly more hydrophilic and more lubricious than either uncoated polyurethane or silicone. Adherence of a hydrophilic Escherichia coli isolate to PVP-coated polyurethane and uncoated polyurethane was similar but significantly less than adherence to silicone. Adherence of a hydrophobic Enterococcus faecalis isolate to PVP-coated polyurethane and silicone was similar but was significantly less than adherence to uncoated polyurethane. Struvite encrustation was similar on the PVP-coated polyurethane and silicone but significantly less than on uncoated polyurethane. Furthermore, hydroxyapatite encrustation was significantly less on the PVP-coated polyurethane than on either uncoated polyurethane or silicone. The results suggest that the PVP-coating could be useful in preventing complications caused by bacterial biofilm formation and the deposition of encrustation on biomaterials implanted in the urinary tract and, therefore, warrants further evaluation. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Key to various bone substitute scaffold production techniques is the development of free-flowing ceramic slurry with optimum theological properties. The aim is to achieve a colloidal suspension with as high a solid content as possible while maintaining a low viscosity which easily penetrates the pores of relevant sacrificial templates. The following investigation describes the optimization of a hydroxyapatite slip and demonstrates its potential application in scaffold production. Using predominantly spherical particles of hydroxyapatite of between 0.82 mu m and 16.2 mu m, coupled with a 2 wt % addition of the anionic polyelectrolyte, ammonium polyacrylate, an 80 wt % (55.9 vol %) hydroxyapatite solid loaded slip with a viscosity of approximately 126 mPa s has been developed. Its ability to infiltrate and replicate porous preforms has been shown using polyurethane foam. The enhanced particle packing achieved has allowed for the production of scaffolds with highly dense and uniform grain structures. The results represent a significant improvement in current slurry production techniques and can be utilized to develop high-density ceramic bone substitute scaffolds.
Resumo:
BACKGROUND: HIV microbicide trials have emphasized the need to evaluate the safety of topical microbicides and delivery platforms in an animal model prior to conducting clinical efficacy trials. An ideal delivery device should provide sustainable and sufficient concentrations of effective products to prevent HIV transmission while not increasing transmission risk by either local mucosal inflammation and/or disruption of the normal vaginal microflora.
METHODS: Safety analyses of macaque-sized elastomeric silicone and polyurethane intravaginal rings (IVRs) loaded with candidate antiretroviral (ARV) drugs were tested in four studies ranging in duration from 49 to 73 days with retention of the IVR being 28 days in each study. Macaques were assigned to 3 groups; blank IVR, ARV-loaded IVR, and naïve. In sequential studies, the same macaques were used but rotated into different groups. Mucosal and systemic levels of cytokines were measured from vaginal fluids and plasma, respectively, using multiplex technology. Changes in vaginal microflora were also monitored. Statistical analysis (Mann-Whitney test) was used to compare data between two groups of unpaired samples (with and without IVR, and IVR with and without ARV) for the groups collectively, and also for individual macaques.
RESULTS: There were few statistically significant differences in mucosal and systemic cytokine levels measured longitudinally when the ring was present or absent, with or without ARVs. Of the 8 proinflammatory cytokines assayed a significant increase (p = 0.015) was only observed for IL8 in plasma with the blank and ARV loaded IVR (median of 9.2 vs. 5.7 pg/ml in the absence of IVR). There were no significant differences in the prevalence of H2O2-producing lactobacilli or viridans streptococci, or other microorganisms indicative of healthy vaginal microflora. However, there was an increase in the number of anaerobic gram negative rods in the presence of the IVR (p= < 0.0001).
CONCLUSIONS: IVRs with or without ARVs neither significantly induce the majority of potentially harmful proinflammatory cytokines locally or systemically, nor alter the lactobacillus or G. vaginalis levels. The increase in anaerobic gram negative rods alone suggests minimal disruption of normal vaginal microflora. The use of IVRs as a long-term sustained delivery device for ARVs is promising and preclinical studies to demonstrate the prevention of transmission in the HIV/SHIV nonhuman primate model should continue.
Resumo:
UC781 is a potent and poorly water-soluble nonnucleoside reverse transcriptase inhibitor being investi- gated as a potential microbicide for preventing sexual transmission of HIV-1. This study was designed to evaluate the in vivo release and pharmacokinetics of UC781 delivered from matrix-type intravaginal ring segments in rabbits. Three polymer matrices (polyurethane, ethylene vinyl acetate copolymer, and silicone elastomer) and two drug loadings (5 and 15 mg/segment) were evaluated in at least one of two independent studies for up to 28 days in vivo. Inter-study comparison of in vivo release, vaginal tissue, and plasma concentrations for similar formulations demonstrated good reproducibility of the animal model. Mean estimates for a 28-day in vivo release ranged from 0.35 to 3.17 mg UC781 per segment. Mean proximal vaginal tissue levels (adjacent to the IVR segment) were 8– 410 ng/g and did not change significantly with time for most formulations. Distal vaginal tissue levels of UC781 were 6- to 49-fold lower than proximal tissue levels. Mean UC781 plasma levels were low for all formulations, at 0.09–0.58 ng/mL. All formulations resulted in similar UC781 concentrations in vaginal tissue and plasma, except the low loading polyurethane group which provided significantly lower levels. Loading dependent release and pharmacokinetics were only clearly observed for the polyurethane matrix. Based on these results, intravaginal ring segments loaded with UC781 led to vaginal tissue concen- trations ranging from below to approximately two orders of magnitude higher than UC781’s EC50 under in vitro conditions (2.8 ng/mL), with little influence by polymer matrix or UC781 loading. Moreover, these findings support the use of rabbit vaginal pharmacokinetic studies in preclinical testing of microbicide intravaginal rings.
Resumo:
The production of complex inorganic forms, based on naturally occurring scaffolds offers an exciting avenue for the construction of a new generation of ceramic-based bone substitute scaffolds. The following study reports an investigation into the architecture (porosity, pore size distribution, pore interconnectivity and permeability), mechanical properties and cytotoxic response of hydroxyapatite bone substitutes produced using synthetic polymer foam and natural marine sponge performs. Infiltration of polyurethane foam (60 pores/in2) using a high solid content (80wt %), low viscosity (0.126Pas) hydroxyapatite slurry yielded 84-91% porous replica scaffolds with pore sizes ranging from 50µm - 1000µm (average pore size 577µm), 99.99% pore interconnectivity and a permeability value of 46.4 x10-10m2. Infiltration of the natural marine sponge, Spongia agaricina, yielded scaffolds with 56- 61% porosity, with 40% of pores between 0-50µm, 60% of pores between 50-500µm (average pore size 349 µm), 99.9% pore interconnectivity and a permeability value of 16.8 x10-10m2. The average compressive strengths and compressive moduli of the natural polymer foam and marine sponge replicas were 2.46±1.43MPa/0.099±0.014GPa and 8.4±0.83MPa /0.16±0.016GPa respectively. Cytotoxic response proved encouraging for the HA Spongia agaricina scaffolds; after 7 days in culture medium the scaffolds exhibited endothelial cells (HUVEC and HDMEC) and osteoblast (MG63) attachment, proliferation on the scaffold surface and penetration into the pores. It is proposed that the use of Spongia agaricina as a precursor material allows for the reliable and repeatable production of ceramic-based 3-D tissue engineered scaffolds exhibiting the desired architectural and mechanical characteristics for use as a bone 3 scaffold material. Moreover, the Spongia agaricina scaffolds produced exhibit no adverse cytotoxic response.
Resumo:
In practice, polyvinyl chloride endotracheal tubes and polyurethane urinary catheters are located in areas where they are exposed to the conditioning fluids saliva and urine, respectively. Samples of both biomaterials were incubated in these conditioning fluids and, following treatment, dynamic contact angle measurement and surface roughness assessment by atomic force microscopy were used to analyse surface characteristics. Over a 24 h period of contact with the conditioning fluids, the surface of both materials became significantly more hydrophilic (p
Resumo:
Various grades of Thermoplastic Polyurethane (TPU) supplied by Bayer were studied to determine their suitability for the rotational moulding process. Following grinding, parts were produced using a variety of peak internal air temperatures and cooling rates. The tensile and impact properties of these parts were then analysed and it was found that both the grade and moulding conditions had a large bearing on the quality and mechanical strength of the part produced.
Resumo:
Producing concrete with secondary raw materials is an excellent way to contribute to a moresustainable world, provided that this concrete has at least the same performance during itsservice life as concrete made with the primary raw materials it replaces. Secondary rawmaterials for Light Weight (LW) aggregates (rigid polyurethane foams, shredded tire rubberand mixed plastic scraps) have been combined with secondary raw materials for the binder(fly ash, slag and perlite tailings) making sustainable concretes that were investigated fortheir suitability as LW, highly insulating concrete for four different types of applications.Compliance to desired engineering properties (workability, setting time) was not alwaysfeasible: it was mostly the low workability of the mixtures that limited their application.Contrary to well established cements, steering the workability by adding water was not anoption for these binders that rely on alkali-activation. Eight successful mixtures have beentested further. The results have shown that it is possible to produce a non-structuralsustainable concrete with good mechanical and thermal insulation properties.Design of concrete made with novel materials is currently not feasible without extensiveexperimentation as no design rules exist other than empirically derived rules based ontraditional materials. As a radical different approach, a flexible concrete mix design has beendeveloped with which the concrete can be modelled in the fresh and hardened state. Thenumerical concrete mix design method proves a promising tool in designing concrete forperformance demands such as elasticity parameters and thermal conductivity
Resumo:
The paper addresses the quality of the interface and edge bonded joints in layers of cross-laminated timber (CLT) panels. The shear performance was studied to assess the suitability of two different adhesives, Polyurethane (PUR) and Phenol-Resorcinol-Formaldehyde (PRF), and to determine the optimum clamping pressure. Since there is no established testing procedure to determine the shear strength of the surface bonds between layers in a CLT panel, block shear tests of specimens in two different configurations were carried out, and further shear tests of edge bonded specimen in two configurations were performed. Delamination tests were performed on samples which were subjected to accelerated aging to assess the durability of bonds in severe environmental conditions. Both tested adhesives produced boards with shear strength values within the edge bonding requirements of prEN 16351 for all manufacturing pressures. While the PUR specimens had higher shear strength values, the PRF specimens demonstrated superior durability characteristics in the delamination tests. It seems that the test protocol introduced in this study for crosslam bonded specimens, cut from a CLT panel, and placed in the shearing tool horizontally, accurately reflects the shearing strength of glue lines in CLT.
Resumo:
Bone tissue engineering may provide an alternative to autograft, however scaffold optimisation is required to maximize bone ingrowth. In designing scaffolds, pore architecture is important and there is evidence that cells prefer a degree of non-uniformity. The aim of this study was to compare scaffolds derived from a natural porous marine sponge (Spongia agaricina) with unique architecture to those derived from a synthetic polyurethane foam. Hydroxyapatite scaffolds of 1 cm3 were prepared via ceramic infiltration of a marine sponge and a polyurethane (PU) foam. Human foetal osteoblasts (hFOB) were seeded at 1x105 cells/scaffold for up to 14 days. Cytotoxicity, cell number, morphology and differentiation were investigated. PU-derived scaffolds had 84-91% porosity and 99.99% pore interconnectivity. In comparison marine sponge-derived scaffolds had 56-61% porosity and 99.9% pore interconnectivity. hFOB studies showed that a greater number of cells were found on marine sponge-derived scaffolds at than on the PU scaffold but there was no significant difference in cell differentiation. X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS) showed that Si ions were released from the marine-derived scaffold. In summary, three dimensional porous constructs have been manufactured that support cell attachment, proliferation and differentiation but significantly more cells were seen on marine-derived scaffolds. This could be due both to the chemistry and pore architecture of the scaffolds with an additional biological stimulus from presence of Si ions. Further in vivo tests in orthotopic models are required but this marine-derived scaffold shows promise for applications in bone tissue engineering.
Resumo:
Currently, micro-joining of plastic parts to metal parts in medical devices is achieved by using medical adhesives, For example, pacemakers, defibrillators and neurological stimulators are designed using silicone adhesive to seal the joint between the polyurethane connector module and the titanium can [1]. Nevertheless, the use of adhesive is problematic because it requires a long time to cure and has high tendency to produce leachable products which might be harmful to the human body. An alternative for directly joining plastics to metal without adhesive is therefore required. Laser transmission joining (LTJ) is growing in importance, and has the potential to gain the niche in micro-fabrication of plastics-metal hybrid joints for medical device applications. The possibility of directly joining plastics to metal by LTJ technique have been demonstrated by a number of studies in recent literature [2]. The widely-accepted understanding of LTJ between plastics and metal is that generation and rapid expansion of micro-bubbles at the plastics-metal interface exert high local pressure to press the melted plastics towards the metal surface features during the laser processing [2]. This subsequently creates the plastics-metal hybrid joint by the mechanisms of mechanical interlocking as well as chemical and physical bonds between the plastics and metal surfaces. Although the micro-bubbles can help promote the mechanical interlocking effect to increase the joint strength, the creation of bubble is a random and complex process depending on the complicated interactions between the laser intensity, thermal degradation properties of plastics, surface temperature and topographical features of metal. In an ideal situation, it is desirable to create the hybrid plastics-metal joint without bubbles. However, the mechanical performance of the hybrid plastics-metal joint without bubbles is still unknown, and systematic comparison between the hybrid joints with and without bubbles is lacking in literature. This becomes the objective of this study. In this work, the laser process parameters were carefully chosen from a preliminary study, such that different hybrid joints: with and without bubbles can be produced and compared. Biocompatible PET and commercially pure Ti were selected as materials for laser joining.