938 resultados para platelet intracellular calcium response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of intracellular signaling pathways can modulate the properties of voltage-gated ion channels. Some of them are well characterized. However, the diffusible second messenger mediating suppression of M current via G protein-coupled receptors has not been identified. In superior cervical ganglion neurons, we find that the signaling pathways underlying M current inhibition by B2 bradykinin and M1 muscarinic receptors respond very differently to inhibitors. The bradykinin pathway was suppressed by the phospholipase C inhibitor U-73122, by blocking the IP3 receptor with pentosan polysulfate or heparin, and by buffering intracellular calcium, and it was occluded by allowing IP3 to diffuse into the cytoplasm via a patch pipette. By contrast, the muscarinic pathway was not disrupted by any of these treatments. The addition of bradykinin was accompanied by a [Ca2+]i rise with a similar onset and time to peak as the inhibition of M current. The M current inhibition and the rise of [Ca2+]i were blocked by depletion of Ca2+ internal stores by thapsigargin. We conclude that bradykinin receptors inhibit M current of sympathetic neurons by activating phospholipase C and releasing Ca2+ from IP3-sensitive Ca2+ stores, whereas muscarinic receptors do not use the phospholipase C pathway to inhibit M current channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteases as well as alterations in intracellular calcium have important roles in hepatic preservation-reperfusion injury, and increased calpain activity recently has been demonstrated in liver allografts. Experiments were designed to evaluate (i) hepatic cytosolic calpain activity during different periods of cold ischemia (CI), rewarming, or reperfusion, and (ii) effects of inhibition of calpain on liver graft function using the isolated perfused rat liver and arterialized orthotopic liver transplantation models. Calpain activity was assayed using the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-7-amino-4-methyl coumarin (AMC) and expressed as mean ± SD pmol AMC released/min per mg of cytosolic protein. Calpain activity rose significantly after 24 hr of CI in University of Wisconsin solution and further increased with longer preservation. Activity also increased within 30 min of rewarming, peaking at 120 min. Increased durations of CI preceding rewarming resulted in significantly higher activity (P < 0.01). Calpain activity increased rapidly upon reperfusion and was significantly enhanced by previous CI (P < 0.01). Calpain inhibition with Cbz-Val-Phe methyl ester significantly decreased aspartate aminotransferase released in the isolated perfused rat liver perfusate (P < 0.05). Duration of survival after orthotopic liver transplantation using livers cold-preserved for 40 hr was also significantly increased (P < 0.05) with calpain inhibitor. In conclusion, calpain proteases are activated during each phase of transplantation and are likely to play an important role in the mechanisms of preservation-reperfusion injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied signaling mechanisms that stimulate exocytosis and luteinizing hormone secretion in isolated male rat pituitary gonadotropes. As judged by reverse hemolytic plaque assays, phorbol-12-myristate-13-acetate (PMA) stimulates as many gonadotropes to secrete as does gonadotropin-releasing hormone (GnRH). However, PMA and GnRH use different signaling pathways. The secretagogue action of GnRH is not very sensitive to bisindolylmaleimide I, an inhibitor of protein kinase C, but is blocked by loading cells with a calcium chelator, 1,2-bis-(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid. The secretagogue action of PMA is blocked by bisindolylmaleimide I and is not very sensitive to the intracellular calcium chelator. GnRH induces intracellular calcium elevations, whereas PMA does not. As judged by amperometric measurements of quantal catecholamine secretion from dopamine- or serotonin-loaded gonadotropes, the secretagogue action of PMA develops more slowly (in several minutes) than that of GnRH. We conclude that exocytosis of secretory vesicles can be stimulated independently either by calcium elevations or by activation of protein kinase C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian anx7 gene codes for a Ca2+-activated GTPase, which supports Ca2+/GTP-dependent secretion events and Ca2+ channel activities in vitro and in vivo. To test whether anx7 might be involved in Ca2+ signaling in secreting pancreatic β cells, we knocked out the anx7 gene in the mouse and tested the insulin-secretory properties of the β cells. The nullizygous anx7 (−/−) phenotype is lethal at embryonic day 10 because of cerebral hemorrhage. However, the heterozygous anx7 (+/−) mouse, although expressing only low levels of ANX7 protein, is viable and fertile. The anx7 (+/−) phenotype is associated with a substantial defect in insulin secretion, although the insulin content of the islets, is 8- to 10-fold higher in the mutants than in the normal littermate control. We infer from electrophysiological studies that both glucose-stimulated secretion and voltage-dependent Ca2+ channel functions are normal. However, electrooptical recordings indicate that the (+/−) mutation has caused a change in the ability of inositol 1,4,5-trisphosphate (IP3)-generating agonists to release intracellular calcium. The principle molecular consequence of lower anx7 expression is a profound reduction in IP3 receptor expression and function in pancreatic islets. The profound increase in islets, β cell number, and size may be a means of compensating for less efficient insulin secretion by individual defective pancreatic β cells. This is a direct demonstration of a connection between glucose-activated insulin secretion and Ca2+ signaling through IP3-sensitive Ca2+ stores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impaired insulin secretion is a characteristic of non-insulin-dependent diabetes mellitus (NIDDM). One possible therapeutic agent for NIDDM is the insulinotropic hormone glucagon-like peptide 1 (GLP-1). GLP-1 stimulates insulin secretion through several mechanisms including activation of protein kinase A (PKA). We now demonstrate that the subcellular targeting of PKA through association with A-kinase-anchoring proteins (AKAPs) facilitates GLP-1-mediated insulin secretion. Disruption of PKA anchoring by the introduction of anchoring inhibitor peptides or expression of soluble AKAP fragments blocks GLP-1 action in primary islets and cAMP-responsive insulin secretion in clonal beta cells (RINm5F). Displacement of PKA also prevented cAMP-mediated elevation of intracellular calcium suggesting that localized PKA phosphorylation events augment calcium flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to the well-characterized GTP-dependent nuclear transport observed in permeabilized cells, we detected a mode of nuclear transport that was GTP-independent at elevated cytoplasmic calcium concentrations. Nuclear transport under these conditions was blocked by calmodulin inhibitors. Recombinant calmodulin restored ATP-dependent nuclear transport in the absence of cytosol. Calmodulin-dependent transport was inhibited by wheat germ agglutinin consistent with transport proceeding through nuclear pores. We propose that release of intracellular calcium stores upon cell activation inhibits GTP-dependent nuclear transport; the elevated cytosolic calcium then acts through calmodulin to stimulate the novel GTP-independent mode of import.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recently identified chemokine, fractalkine, is a member of the chemokine gene family, which consists principally of secreted, proinflammatory molecules. Fractalkine is distinguished structurally by the presence of a CX3C motif as well as transmembrane spanning and mucin-like domains and shows atypical constitutive expression in a number of nonhematopoietic tissues, including brain. We undertook an extensive characterization of this chemokine and its receptor CX3CR1 in the brain to gain insights into use of chemokine-dependent systems in the central nervous system. Expression of fractalkine in rat brain was found to be widespread and localized principally to neurons. Recombinant rat CX3CR1, as expressed in Chinese hamster ovary cells, specifically bound fractalkine and signaled in the presence of either membrane-anchored or soluble forms of fractalkine protein. Fractalkine stimulated chemotaxis and elevated intracellular calcium levels of microglia; these responses were blocked by anti-CX3CR1 antibodies. After facial motor nerve axotomy, dramatic changes in the levels of CX3CR1 and fractalkine in the facial nucleus were evident. These included increases in the number and perineuronal location of CX3CR1-expressing microglia, decreased levels of motor neuron-expressed fractalkine mRNA, and an alteration in the forms of fractalkine protein expressed. These data describe mechanisms of cellular communication between neurons and microglia, involving fractalkine and CX3CR1, which occur in both normal and pathological states of the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebellar Purkinje neurons receive two major excitatory inputs, the climbing fibers (CFs) and parallel fibers (PFs). Simultaneous, repeated activation of CFs and PFs results in the long-term depression (LTD) of the amplitude of PF-evoked synaptic currents. To induce LTD, activation of CFs may be substituted with depolarization of the Purkinje neuron to turn on voltage-activated calcium channels and increase the intracellular calcium concentration. The role of PFs in the induction of LTD, however, is less clear. PFs activate glutamate metabotropic receptors that increase phosphoinositide turnover and elevate cytosolic inositol 1,4,5-trisphosphate (InsP3). It has been proposed that calcium release from intracellular stores via InsP3 receptors may be important in the induction of LTD. We studied the role of InsP3 in the induction of LTD by photolytic release of InsP3 from its biologically inactive “caged” precursor in voltage-clamped Purkinje neurons in acutely prepared cerebellar slices. We find that InsP3-evoked calcium release is as effective in LTD induction as activation of PFs. InsP3-induced LTD was prevented by calcium chelator 1,2-bis(2-amino phenoxy)ethane-N,N,N′,N′-tetraacetic acid. LTD produced either by repeated activation of PFs combined with depolarization (PF+ΔV), or by InsP3 combined with depolarization (InsP3+ΔV) saturated at ≈50%. Maximal LTD induced by PF+ΔV could not be further increased by InsP3+ΔV and vice versa, which suggests that both protocols for induction of LTD share a common path. In addition to inducing LTD, photo-release of InsP3+ΔV resulted in the rebound potentiation of inhibitory synaptic currents. In the presence of heparin, an InsP3 receptor antagonist, repeated activation of PF+ΔV failed to induce LTD, suggesting that InsP3 receptors play an important role in LTD induction under physiological conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FKBP12, the 12-kDa FK506-binding protein, is a ubiquitous abundant protein that acts as a receptor for the immunosuppressant drug FK506, binds tightly to intracellular calcium release channels and to the transforming growth factor β (TGF-β) type I receptor. We now demonstrate that cells from FKBP12-deficient (FKBP12−/−) mice manifest cell cycle arrest in G1 phase and that these cells can be rescued by FKBP12 transfection. This arrest is mediated by marked augmentation of p21(WAF1/CIP1) levels, which cannot be further augmented by TGF-β1. The p21 up-regulation and cell cycle arrest derive from the overactivity of TGF-β receptor signaling, which is normally inhibited by FKBP12. Cell cycle arrest is prevented by transfection with a dominant-negative TGF-β receptor construct. TGF-β receptor signaling to gene expression can be mediated by SMAD, p38, and ERK/MAP kinase (extracellular signal-regulated kinase/mitogen-activated protein kinase) pathways. SMAD signaling is down-regulated in FKBP12−/− cells. Inhibition of ERK/MAP kinase fails to affect p21 up-regulation. By contrast, activated phosphorylated p38 is markedly augmented in FKBP12−/− cells and the p21 up-regulation is prevented by an inhibitor of p38. Thus, FKBP12 is a physiologic regulator of cell cycle acting by normally down-regulating TGF-β receptor signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although neurogenesis in the embryo proceeds in a region- or lineage-specific fashion coincident with neuropeptide expression, a regulatory role for G protein-coupled receptors (GPCR) remains undefined. Pituitary adenylate cyclase activating polypeptide (PACAP) stimulates sympathetic neuroblast proliferation, whereas the peptide inhibits embryonic cortical precursor mitosis. Here, by using ectopic expression strategies, we show that the opposing mitogenic effects of PACAP are determined by expression of PACAP receptor splice isoforms and differential coupling to the phospholipase C (PLC) pathway, as opposed to differences in cellular context. In embryonic day 14 (E14) cortical precursors transfected with the hop receptor variant, but not cells transfected with the short variant, PACAP activates the PLC pathway, increasing intracellular calcium and eliciting translocation of protein kinase C. Ectopic expression of the hop variant in cortical neuroblasts transforms the antimitotic effect of PACAP into a promitogenic signal. Furthermore, PACAP promitogenic effects required PLC pathway function indicated by antagonist U-73122 studies in hop-transfected cortical cells and native sympathetic neuroblasts. These observations highlight the critical role of lineage-specific expression of GPCR variants in determining mitogenic signaling in neural precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melanin-concentrating hormone (MCH) is a 19-aa cyclic neuropeptide originally isolated from chum salmon pituitaries. Besides its effects on the aggregation of melanophores in fish several lines of evidence suggest that in mammals MCH functions as a regulator of energy homeostasis. Recently, several groups reported the identification of an orphan G protein-coupled receptor as a receptor for MCH (MCH-1R). We hereby report the identification of a second human MCH receptor termed MCH-2R, which shares about 38% amino acid identity with MCH-1R. MCH-2R displayed high-affinity MCH binding, resulting in inositol phosphate turnover and release of intracellular calcium in mammalian cells. In contrast to MCH-1R, MCH-2R signaling is not sensitive to pertussis toxin and MCH-2R cannot reduce forskolin-stimulated cAMP production, suggesting an exclusive Gαq coupling of the MCH-2R in cell-based systems. Northern blot and in situ hybridization analysis of human and monkey tissue shows that expression of MCH-2R mRNA is restricted to several regions of the brain, including the arcuate nucleus and the ventral medial hypothalamus, areas implicated in regulation of body weight. In addition, the human MCH-2R gene was mapped to the long arm of chromosome 6 at band 6q16.2–16.3, a region reported to be associated with cytogenetic abnormalities of obese patients. The characterization of a second mammalian G protein-coupled receptor for MCH potentially indicates that the control of energy homeostasis in mammals by the MCH neuropeptide system may be more complex than initially anticipated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opiates are known to function as immunomodulators, in part by effects on T cells. However, the signal transduction pathways mediating the effects of opiates on T cells are largely undefined. To determine whether pathways that regulate free intracellular calcium ([Ca2+]i) and/or cAMP are affected by opiates acting through delta-type opioid receptors (DORs), a cDNA encoding the neuronal DOR was expressed in a stably transfected Jurkat T-cell line. The DOR agonists, deltorphin and [D-Ala2, D-Leu5]-enkephalin (DADLE), elevated [Ca2+]i, measured by flow cytofluorometry using the calcium-sensitive dye, Fluo-3. At concentrations from 10(-11)-10(-7) M, both agonists increased [Ca2+]i from 60 nM to peak concentrations of 400 nM in a dose-dependent manner within 30 sec (ED50 of approximately 5 x 10(-9) M). Naltrindole, a selective DOR antagonist, abolished the increase in [Ca2+]i, and pretreatment with pertussis toxin was also effective. To assess the role of extracellular calcium, cells were pretreated with EGTA, which reduced the initial deltorphin-induced elevation of [Ca2+]i by more than 50% and eliminated the second phase of calcium mobilization. Additionally, the effect of DADLE on forskolin-stimulated cAMP production was determined. DADLE reduced cAMP production by 70% (IC50 of approximately equal to 10(-11) M), and pertussis toxin inhibited the action of DADLE. Thus, the DOR expressed by a transfected Jurkat T-cell line is positively coupled to pathways leading to calcium mobilization and negatively coupled to adenylate cyclase. These studies identify two pertussis toxin-sensitive, G protein-mediated signaling pathways through which DOR agonists regulate the levels of intracellular messengers that modulate T-cell activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influx of calcium into the postsynaptic neuron is likely to be an important event in memory formation. Among the mechanisms that nerve cells may use to alter the time course or size of a spike of intracellular calcium are cytosolic calcium binding or "buffering" proteins. To consider the role in memory formation of one of these proteins, calbindin D28K, which is abundant in many neurons, including the CA1 pyramidal cells of the hippocampus, transgenic mice deficient in calbindin D28K have been created. These mice show selective impairments in spatial learning paradigms and fail to maintain long-term potentiation. These results suggest a role for calbindin D28K protein in temporally extending a neuronal calcium signal, allowing the activation of calcium-dependent intracellular signaling pathways underlying memory function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marked increases in intracellular calcium may play a role in mediating cellular dysfunction and death following central nervous system trauma, in part through the activation of the calcium-dependent neutral protease calpain. In this study, we evaluated the effect of the calpain inhibitor AK295 [Z-Leu-aminobutyric acid-CONH(CH2)3-morpholine] on cognitive and motor deficits following lateral fluid percussion brain injury in rats. Before injury, male Sprague-Dawley rats (350-425 g) were trained to perform a beam-walking task and to learn a cognitive test using a Morris water maze paradigm. Animals were subjected to fluid percussion injury (2.2-2.4 atm; 1 atm = 101.3 kPa) and, beginning at 15 min postinjury, received a continuous intraarterial infusion of AK295 (120-140 mg/kg, n = 15) or vehicle (n= 16) for 48 hr. Sham (uninjured) animals received either drug (n = 5) or vehicle (n = 10). Animals were evaluated for neurobehavioral motor function at 48 hr and 7 days postinjury and were tested in the Morris water maze to evaluate memory retention at 7 days postinjury. At 48 hr, both vehicle- and AK295-treated injured animals showed significant neuromotor deficits (P< 0.005). At 7 days, injured animals that received vehicle continued to exhibit significant motor dysfunction (P< 0.01). However, brain-injured, AK295-treated animals showed markedly improved motor scores (P<0.02), which were not significantly different from sham (uninjured) animals. Vehicle-treated, injured animals demonstrated a profound cognitive deficit (P< 0.001), which was significantly attenuated by AK295 treatment (P< 0.05). To our knowledge, this study is the first to use a calpain inhibitor following brain trauma and suggests that calpain plays a role in the posttraumatic events underlying memory and neuromotor dysfunction.