290 resultados para plasminogen
Resumo:
A hypercoagulable state might be one important mechanism linking obstructive sleep apnea (OSA) with incident myocardial infarction and stroke. However, previous studies on prothrombotic factors in OSA are not uniform and cross-sectional. We longitudinally studied prothrombotic factors in relation to OSA risk, adjusting for baseline levels of prothrombotic factors, demographics, metabolic parameters, aspirin use, and life style factors. The Berlin Questionnaire and/or neck circumference were used to define high OSA risk in 329 South African teachers (48.0 % male, 44.6 % black) at baseline and at three-year follow-up. Von Willebrand factor (VWF), fibrinogen, D-dimer, plasminogen activator inhibitor-1, clot lysis time (CLT), and soluble urokinase-type plasminogen activator receptor (suPAR) were measured in plasma. At baseline 35.7 % of participants had a high risk of OSA. At follow-up, persistently high OSA risk, persistently low OSA risk, OSA risk remission, and new-onset OSA risk were present in 26.1 %, 53.2 %, 9.4 %, and 11.3 % of participants, respectively. New-onset OSA risk was associated with a significant and longitudinal increase in VWF, fibrinogen, CLT, and suPAR relative to persistently low OSA risk; in VWF, fibrinogen, and suPAR relative to remitted OSA risk; and in VWF relative to persistently high OSA risk. Persistently high OSA risk was associated with an increase in CLT and suPAR relative to persistently low OSA risk and in D-dimer relative to remitted OSA risk. Remitted OSA risk was associated with D-dimer decrease relative to persistently low OSA risk. In OSA, hypercoagulability is a dynamic process with a most prominent three-year increase in individuals with new-onset OSA risk.
Resumo:
Each year about 650,000 Europeans die from stroke and a similar number lives with the sequelae of multiple sclerosis (MS). Stroke and MS differ in their etiology. Although cause and likewise clinical presentation set the two diseases apart, they share common downstream mechanisms that lead to damage and recovery. Demyelination and axonal injury are characteristics of MS but are also observed in stroke. Conversely, hallmarks of stroke, such as vascular impairment and neurodegeneration, are found in MS. However, the most conspicuous common feature is the marked neuroinflammatory response, marked by glia cell activation and immune cell influx. In MS and stroke the blood-brain barrier is disrupted allowing bone marrow-derived macrophages to invade the brain in support of the resident microglia. In addition, there is a massive invasion of auto-reactive T-cells into the brain of patients with MS. Though less pronounced a similar phenomenon is also found in ischemic lesions. Not surprisingly, the two diseases also resemble each other at the level of gene expression and the biosynthesis of other proinflammatory mediators. While MS has traditionally been considered to be an autoimmune neuroinflammatory disorder, the role of inflammation for cerebral ischemia has only been recognized later. In the case of MS the long track record as neuroinflammatory disease has paid off with respect to treatment options. There are now about a dozen of approved drugs for the treatment of MS that specifically target neuroinflammation by modulating the immune system. Interestingly, experimental work demonstrated that drugs that are in routine use to mitigate neuroinflammation in MS may also work in stroke models. Examples include Fingolimod, glatiramer acetate, and antibodies blocking the leukocyte integrin VLA-4. Moreover, therapeutic strategies that were discovered in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, turned out to be also effective in experimental stroke models. This suggests that previous achievements in MS research may be relevant for stroke. Interestingly, the converse is equally true. Concepts on the neurovascular unit that were developed in a stroke context turned out to be applicable to neuroinflammatory research in MS. Examples include work on the important role of the vascular basement membrane and the BBB for the invasion of immune cells into the brain. Furthermore, tissue plasminogen activator (tPA), the only established drug treatment in acute stroke, modulates the pathogenesis of MS. Endogenous tPA is released from endothelium and astroglia and acts on the BBB, microglia and other neuroinflammatory cells. Thus, the vascular perspective of stroke research provides important input into the mechanisms on how endothelial cells and the BBB regulate inflammation in MS, particularly the invasion of immune cells into the CNS. In the current review we will first discuss pathogenesis of both diseases and current treatment regimens and will provide a detailed overview on pathways of immune cell migration across the barriers of the CNS and the role of activated astrocytes in this process. This article is part of a Special Issue entitled: Neuro inflammation: A common denominator for stroke, multiple sclerosis and Alzheimer's disease, guest edited by Helga de Vries and Markus Swaninger.
Resumo:
CONTEXT Radiolabelled choline positron emission tomography has changed the management of prostate cancer patients. However, new emerging radiopharmaceutical agents, like radiolabelled prostate specific membrane antigen, and new promising hybrid imaging will begin new challenges in the diagnostic field. OBJECTIVE The continuous evolution in nuclear medicine has led to the improvement in the detection of recurrent prostate cancer (PCa), particularly distant metastases. New horizons have been opened for radiolabelled choline positron emission tomography (PET)/computed tomography (CT) as a guide for salvage therapy or for the assessment of systemic therapies. In addition, new tracers and imaging tools have been recently tested, providing important information for the management of PCa patients. Herein we discuss: (1) the available evidence in literature on radiolabelled choline PET and their recent indications, (2) the role of alternative radiopharmaceutical agents, and (3) the advantages of a recent hybrid imaging device (PET/magnetic resonance imaging) in PCa. EVIDENCE ACQUISITION Data from recently published (2010-2015), original articles concerning the role of choline PET/CT, new emerging radiotracers, and a new imaging device are analysed. This review is reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. EVIDENCE SYNTHESIS In the restaging phase, the detection rate of choline PET varies between 4% and 97%, mainly depending on the site of recurrence and prostate-specific antigen levels. Both 68gallium (68Ga)-prostate specific membrane antigen and 18F-fluciclovine are shown to be more accurate in the detection of recurrent disease as compared with radiolabelled choline PET/CT. Particularly, Ga68-PSMA has a detection rate of 50% and 68%, respectively for prostate-specific antigen levels < 0.5ng/ml and 0.5-2ng/ml. Moreover, 68Ga- PSMA PET/magnetic resonance imaging demonstrated a particularly higher accuracy in detecting PCa than PET/CT. New tracers, such as radiolabelled bombesin or urokinase-type plasminogen activator receptor, are promising, but few data in clinical practice are available today. CONCLUSIONS Some limitations emerge from the published papers, both for radiolabelled choline PET/CT and also for new radiopharmaceutical agents. Efforts are still needed to enhance the impact of published data in the world of oncology, in particular when new radiopharmaceuticals are introduced into the clinical arena. PATIENT SUMMARY In the present review, the authors summarise the last evidences in clinical practice for the assessment of prostate cancer, by using nuclear medicine modalities, like positron emission tomography/computed tomography and positron emission tomography/magnetic resonance imaging.
Resumo:
BACKGROUND AND PURPOSE Five randomized controlled trials have consistently shown that mechanical thrombectomy (MT) in addition to best medical treatment (±intravenous tissue-type plasminogen activator) improves outcome after acute ischemic stroke in patients with large artery anterior circulation stroke. Whether direct MT is equally effective as combined intravenous thrombolysis with MT (ie, bridging thrombolysis) remains unclear. METHODS We retrospectively compared clinical and radiological outcomes in 167 bridging patients with 255 patients receiving direct MT because of large artery anterior circulation stroke. We matched all patients from the direct MT group who would have qualified for intravenous tissue-type plasminogen activator with controls from the bridging group, using multivariate and propensity score analyses. Functional independence was defined as modified Rankin Scale score of 0 to 2. RESULTS From February 2009 to August 2014, 40 patients from the direct MT group would have qualified for bridging thrombolysis but were treated with MT only. Clinical and radiological characteristics did not differ from the bridging cohort, except for higher rates of hypercholesterolemia (P=0.019), coronary heart disease (P=0.039), and shorter intervals from symptom onset to endovascular intervention (P=0.01) in the direct MT group. Functional independence, mortality, and intracerebral hemorrhage rates did not differ (P>0.1). After multivariate matching analysis outcome in both groups did not differ, except for lower rates of asymptomatic intracerebral hemorrhage (P=0.023) and lower mortality (P=0.007) in the direct MT group. CONCLUSIONS In patients with large anterior circulation stroke, direct mechanical intervention seems to be equally effective as bridging thrombolysis. A randomized trial comparing direct MT with bridging therapy is warranted.
Resumo:
Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^
Resumo:
A serpin was identified in normal mammary gland by differential cDNA sequencing. In situ hybridization has detected this serpin exclusively in the myoepithelial cells on the normal and noninvasive mammary epithelial side of the basement membrane and thus was named myoepithelium-derived serine proteinase inhibitor (MEPI). No MEPI expression was detected in the malignant breast carcinomas. MEPI encodes a 405-aa precursor, including an 18-residue secretion signal with a calculated molecular mass of 46 kDa. The predicted sequence of the new protein shares 33% sequence identity and 58% sequence similarity to plasminogen activator inhibitor (PAI)-1 and PAI-2. To determine whether MEPI can modulate the in vivo growth and progression of human breast cancers, we transfected a full-length MEPI cDNA into human breast cancer cells and studied the orthotopic growth of MEPI-transfected vs. control clones in the mammary fat pad of athymic nude mice. Overexpression of MEPI inhibited the invasion of the cells in the in vitro invasion assay. When injected orthotopically into nude mice, the primary tumor volumes, axillary lymph node metastasis, and lung metastasis were significantly inhibited in MEPI-transfected clones as compared with controls. The expression of MEPI in myoepithelial cells may prevent breast cancer malignant progression leading to metastasis.
Resumo:
Altered expression of proteins of the fibrinolytic and coagulation cascades in obesity may contribute to the cardiovascular risk associated with this condition. We previously reported that plasminogen activator inhibitor 1 (PAI-1) is dramatically up-regulated in the plasma and adipose tissues of genetically obese mice. This change may disturb normal hemostatic balance and create a severe hypofibrinolytic state. Here we show that tissue factor (TF) gene expression also is significantly elevated in the epididymal and subcutaneous fat pads from ob/ob mice compared with their lean counterparts, and that its level of expression in obese mice increases with age and the degree of obesity. Cell fractionation and in situ hybridization analysis of adipose tissues indicate that TF mRNA is increased in adipocytes and in unidentified stromal vascular cells. Transforming growth factor β (TGF-β) is known to be elevated in the adipose tissue of obese mice, and administration of TGF-β increased TF mRNA expression in adipocytes in vivo and in vitro. These observations raise the possibility that TF and TGF-β may contribute to the increased cardiovascular disease that accompanies obesity and related non-insulin-dependent diabetes mellitus, and that the adipocyte plays a key role in this process. The recent demonstration that TF also influences angiogenesis, cell adhesion, and signaling suggests that its exact role in adipose tissue physiology/pathology, may be complex.
Resumo:
Several angiogenic factors and extracellular matrix-degrading enzymes that promote invasion and metastasis of cancer are produced by stromal fibroblasts that surround cancer cells. The expression of genes that code for some of these proteins is regulated by the transcription factor NF-κB. In this report, we demonstrate that conditioned medium (CM) from estrogen receptor (ER)-negative but not ER-positive breast cancer cells induces NF-κB in fibroblasts. In contrast, CM from both ER-positive and ER-negative breast cancer cells induces NF-κB in macrophages and endothelial cells. NF-κB activation in fibroblasts was accompanied by induction of interleukin 6 (IL-6) and urokinase plasminogen activator (uPA), both of which promote angiogenesis and metastasis. A survey of cytokines known for their ability to induce NF-κB identified IL-1α as the factor responsible for NF-κB activation in fibroblasts. Analysis of primary breast carcinomas revealed the presence of IL-1α transcripts in majority of lymph node-positive breast cancers. These results along with the known role of IL-1α and IL-6 in osteoclast formation provide insight into the mechanism of metastasis and hypercalcemia in advanced breast cancers.
Resumo:
Ancient septicemic plague epidemics were reported to have killed millions of people for 2 millenniums. However, confident diagnosis of ancient septicemia solely on the basis of historical clinical observations is not possible. The lack of suitable infected material has prevented direct demonstration of ancient septicemia; thus, the history of most infections such as plague remains hypothetical. The durability of dental pulp, together with its natural sterility, makes it a suitable material on which to base such research. We hypothesized that it would be a lasting refuge for Yersinia pestis, the plague agent. DNA extracts were made from the dental pulp of 12 unerupted teeth extracted from skeletons excavated from 16th and 18th century French graves of persons thought to have died of plague (“plague teeth”) and from 7 ancient negative control teeth. PCRs incorporating ancient DNA extracts and primers specific for the human β-globin gene demonstrated the absence of inhibitors in these preparations. The incorporation of primers specific for Y. pestis rpoB (the RNA polymerase β-subunit-encoding gene) and the recognized virulence-associated pla (the plasminogen activator-encoding gene) repeatedly yielded products that had a nucleotide sequence indistinguishable from that of modern day isolates of the bacterium. The specific pla sequence was obtained from 6 of 12 plague skeleton teeth but 0 of 7 negative controls (P < 0.034, Fisher exact test). A nucleic acid-based confirmation of ancient plague was achieved for historically identified victims, and we have confirmed the presence of the disease at the end of 16th century in France. Dental pulp is an attractive target in the quest to determine the etiology of septicemic illnesses detected in ancient corpses. Molecular techniques could be applied to this material to resolve historical outbreaks.
Resumo:
The use of molecular genetics for introducing fluorescent molecules enables the use of donor–donor energy migration to determine intramolecular distances in a variety of proteins. This approach can be applied to examine the overall molecular dimensions of proteins and to investigate structural changes upon interactions with specific target molecules. In this report, the donor–donor energy migration method is demonstrated by experiments with the latent form of plasminogen activator inhibitor type 1. Based on the known x-ray structure of plasminogen activator inhibitor type 1, three positions forming the corners of a triangle were chosen. Double Cys substitution mutants (V106C-H185C, H185C-M266C, and M266C-V106C) and corresponding single substitution mutants (V106C, H185C, and M266C) were created and labeled with a sulfhydryl specific derivative of BODIPY (=the D molecule). The side lengths of this triangle were obtained from analyses of the experimental data. The analyses account for the local anisotropic order and rotational motions of the D molecules, as well as for the influence of a partial DD-labeling. The distances, as determined from x-ray diffraction, between the Cα-atoms of the positions V106C–H185C, H185C–M266C, and M266C–V106C were 60.9, 30.8, and 55.1 Å, respectively. These are in good agreement with the distances of 54 ± 4, 38 ± 3, and 55 ± 3 Å, as determined between the BODIPY groups attached via linkers to the same residues. Although the positions of the D-molecules and the Cα-atoms physically cannot coincide, there is a reasonable agreement between the methods.
Resumo:
Mice deficient for plasminogen exhibit a variety of pathologies, all of which examined to date are reversed when the animals are also made fibrin(ogen) deficient. These results suggested that the predominant, and perhaps exclusive, physiological role of plasminogen is clearance of fibrin. Plasminogen-deficient mice also display resistance to excitotoxin-induced neurodegeneration, in contrast with wild-type mice, which are sensitive. Based on the genetic interaction between plasminogen and fibrinogen, we investigated whether resistance to neuronal cell death in the plasminogen-deficient mice is dependent on fibrin(ogen). Unexpectedly, mice lacking both plasminogen and fibrinogen are resistant to neurodegeneration to levels comparable to plasminogen-deficient mice. Therefore, plasmin acts on substrates other than fibrin during experimental neuronal degeneration, and may function similarly in other pathological settings in the central nervous system.
Resumo:
Drosophila Mad proteins are intracellular signal transducers of decapentaplegic (dpp), the Drosophila transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) homolog. Studies in which the mammalian Smad homologs were transiently overexpressed in cultured cells have implicated Smad2 in TGF-β signaling, but the physiological relevance of the Smad3 protein in signaling by TGF-β receptors has not been established. Here we stably expressed Smad proteins at controlled levels in epithelial cells using a novel approach that combines highly efficient retroviral gene transfer and quantitative cell sorting. We show that upon TGF-β treatment Smad3 becomes rapidly phosphorylated at the SSVS motif at its very C terminus. Either attachment of an epitope tag to the C terminus or replacement of these three serine residues with alanine abolishes TGF-β-induced Smad3 phosphorylation; these proteins act in a dominant-negative fashion to block the antiproliferative effect of TGF-β in mink lung epithelial cells. A Smad3 protein in which the three C-terminal serines have been replaced by aspartic acids is also a dominant inhibitor of TGF-β signaling, but can activate plasminogen activator inhibitor 1 (PAI-1) transcription in a ligand-independent fashion when its nuclear localization is forced by transient overexpression. Phosphorylation of the three C-terminal serine residues of Smad3 by an activated TGF-β receptor complex is an essential step in signal transduction by TGF-β for both inhibition of cell proliferation and activation of the PAI-1 promoter.
Resumo:
Apolipoprotein(a) [apo(a)] is the distinguishing protein component of lipoprotein(a), a major inherited risk factor for atherosclerosis. Human apo(a) is homologous to plasminogen. It contains from 15 to 50 repeated domains closely related to plasminogen kringle four, plus single kringle five-like and inactive protease-like domains. This expressed gene is confined to a subset of primates. Although most mammals lack apo(a), hedgehogs produce an apo(a)-like protein composed of highly repeated copies of a plasminogen kringle three-like domain, with complete absence of protease domain sequences. Both human and hedgehog apo(a)-like proteins form covalently linked lipoprotein particles that can bind to fibrin and other substrates shared with plasminogen. DNA sequence comparisons and phylogenetic analysis indicate that the human type of apo(a) evolved from a duplicated plasminogen gene during recent primate evolution. In contrast, the kringle three-based type of apo(a) evolved from an independent duplication of the plasminogen gene approximately 80 million years ago. In a type of convergent evolution, the plasminogen gene has been independently remodeled twice during mammalian evolution to produce similar forms of apo(a) in two widely divergent groups of species.
Resumo:
Fibroblast growth factor-2 (FGF-2) immobilized on non-tissue culture plastic promotes adhesion and spreading of bovine and human endothelial cells that are inhibited by anti-FGF-2 antibody. Heat-inactivated FGF-2 retains its cell-adhesive activity despite its incapacity to bind to tyrosine-kinase FGF receptors or to cell-surface heparan sulfate proteoglycans. Recombinant glutathione-S-transferase-FGF-2 chimeras and synthetic FGF-2 fragments identify two cell-adhesive domains in FGF-2 corresponding to amino acid sequences 38–61 and 82–101. Both regions are distinct from the FGF-receptor-binding domain of FGF-2 and contain a DGR sequence that is the inverse of the RGD cell-recognition sequence. Calcium deprivation, RGD-containing eptapeptides, soluble vitronectin (VN), but not fibronectin (FN), inhibit cell adhesion to FGF-2. Conversely, soluble FGF-2 prevents cell adhesion to VN but not FN, thus implicating VN receptor in the cell-adhesive activity of FGF-2. Accordingly, monoclonal and polyclonal anti-αvβ3 antibodies prevent cell adhesion to FGF-2. Also, purified human αvβ3 binds to immobilized FGF-2 in a cation-dependent manner, and this interaction is competed by soluble VN but not by soluble FN. Finally, anti-αvβ3 monoclonal and polyclonal antibodies specifically inhibit mitogenesis and urokinase-type plasminogen activator (uPA) up-regulation induced by free FGF-2 in endothelial cells adherent to tissue culture plastic. These data demonstrate that FGF-2 interacts with αvβ3 integrin and that this interaction mediates the capacity of the angiogenic growth factor to induce cell adhesion, mitogenesis, and uPA up-regulation in endothelial cells.
Resumo:
Increased expression of the serine protease urokinase-type plasminogen activator (uPA) in tumor tissues is highly correlated with tumor cell migration, invasion, proliferation, progression, and metastasis. Thus inhibition of uPA activity represents a promising target for antimetastatic therapy. So far, only the x-ray crystal structure of uPA inactivated by H-Glu-Gly-Arg-chloromethylketone has been reported, thus limited data are available for a rational structure-based design of uPA inhibitors. Taking into account the trypsin-like arginine specificity of uPA, (4-aminomethyl)phenylguanidine was selected as a potential P1 residue and iterative derivatization of its amino group with various hydrophobic residues, and structure–activity relationship-based optimization of the spacer in terms of hydrogen bond acceptor/donor properties led to N-(1-adamantyl)-N′-(4-guanidinobenzyl)urea as a highly selective nonpeptidic uPA inhibitor. The x-ray crystal structure of the uPA B-chain complexed with this inhibitor revealed a surprising binding mode consisting of the expected insertion of the phenylguanidine moiety into the S1 pocket, but with the adamantyl residue protruding toward the hydrophobic S1′ enzyme subsite, thus exposing the ureido group to hydrogen-bonding interactions. Although in this enzyme-bound state the inhibitor is crossing the active site, interactions with the catalytic residues Ser-195 and His-57 are not observed, but their side chains are spatially displaced for steric reasons. Compared with other trypsin-like serine proteases, the S2 and S3/S4 pockets of uPA are reduced in size because of the 99-insertion loop. Therefore, the peculiar binding mode of the new type of uPA inhibitors offers the possibility of exploiting optimized interactions at the S1′/S2′ subsites to further enhance selectivity and potency. Because crystals of the uPA/benzamidine complex allow inhibitor exchange by soaking procedures, the structure-based design of new generations of uPA inhibitors can rely on the assistance of x-ray analysis.