973 resultados para plant functional traits
Resumo:
Relationships among floral biology, floral micromorphology and pollinator behaviour in bird-pollinated orchids are important issues to understand the evolution of the huge flower diversity within Orchidaceae. We aimed to investigate floral mechanisms underlying the interaction with pollinators in two hummingbird-pollinated orchids occurring in the Atlantic forest. We assessed floral biology, nectar traits, nectary and column micromorphologies, breeding systems and pollinators. In both species, nectar is secreted by lip calli through spaces between the medial lamellar surfaces of epidermal cells. Such form of floral nectar secretion has not been previously described. Both species present functional protandry and are self-compatible yet pollinator-dependent. Fruit sets in hand-pollination experiments were more than twice those under natural conditions, evidencing pollen limitation. The absence of fruit set in interspecific crosses suggests the existence of post-pollination barriers between these synchronopatric species. In Elleanthus brasiliensis, fruits resulting from cross-pollination and natural conditions were heavier than those resulting from self-pollination, suggesting advantages to cross-pollination. Hummingbirds pollinated both species, which share at least one pollinator species. Species differences in floral morphologies led to distinct pollination mechanisms. In E. brasiliensis, attachment of pollinaria to the hummingbird bill occurs through a lever apparatus formed by an appendage in the column, another novelty to the knowledge of orchids. In E. crinipes, pollinaria attachment occurs by simple contact with the bill during insertion into the flower tube, which fits tightly around the bill. The novelties described here illustrate the overlooked richness in ecology and morphophysiology in Orchidaceae. This article is protected by copyright. All rights reserved.
Mineral Nutrition Of Campos Rupestres Plant Species On Contrasting Nutrient-impoverished Soil Types.
Resumo:
In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems.
Resumo:
Background: The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results: We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions: The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk.
Resumo:
Anthocyanins, the major red, purple, and blue pigments of plants, absorb visible as well as UV radiation and are effective antioxidants and scavengers of active oxygen species. In plant leaves, one of the functional roles proposed for anthocyanins is protection of the photosynthetic apparatus from the effects of excess incident visible or UV-B radiation and photooxidative stress. In essence, a photoprotective role requires that the excited singlet states of both complexed and uncomplexed anthocyanins deactivate back to the ground state so quickly that intersystem crossing, photoreaction, and diffusion-controlled quenching processes cannot compete. Studies of the photochemical properties of synthetic analogs of anthocyanins and of several naturally occurring anthocyanins show that this is indeed the case, uncomplexed anthocyanins decaying back to the ground state via fast (subnanosecond) excited-state proton transfer (ESPT) and anthocyanin-copigment complexes by fast (sub-picosecond) charge-transfer-mediated internal conversion.
Resumo:
Given the susceptibility of tomato plants to pests, the aim of the present study was to understand how hormones are involved in the formation of tomato natural defences against insect herbivory. Tomato hormone mutants, previously introgressed into the same genetic background of reference, were screened for alterations in trichome densities and allelochemical content. Ethylene, gibberellin, and auxin mutants indirectly showed alteration in trichome density, through effects on epidermal cell area. However, brassinosteroids (BRs) and jasmonates (JAs) directly affected trichome density and allelochemical content, and in an opposite fashion. The BR-deficient mutant dpy showed enhanced pubescence, zingiberene biosynthesis, and proteinase inhibitor expression; the opposite was observed for the JA-insensitive jai1-1 mutant. The dpyxjai1-1 double mutant showed that jai1-1 is epistatic to dpy, indicating that BR acts upstream of the JA signalling pathway. Herbivory tests with the poliphagous insect Spodoptera frugiperda and the tomato pest Tuta absoluta clearly confirmed the importance of the JA-BR interaction in defence against herbivory. The study underscores the importance of hormonal interactions on relevant agricultural traits and raises a novel biological mechanism in tomato that may differ from the BR and JA interaction already suggested for Arabidopsis.
Resumo:
Microsatellites and gene-derived markers are still underrepresented in the core molecular linkage map of common bean compared to other types of markers. In order to increase the density of the core map, a set of new markers were developed and mapped onto the RIL population derived from the `BAT93` x `Jalo EEP558` cross. The EST-SSR markers were first characterized using a set of 24 bean inbred lines. On average, the polymorphism information content was 0.40 and the mean number of alleles per locus was 2.7. In addition, AFLP and RGA markers based on the NBS-profiling method were developed and a subset of the mapped RGA was sequenced. With the integration of 282 new markers into the common bean core map, we were able to place markers with putative known function in some existing gaps including regions with QTL for resistance to anthracnose and rust. The distribution of the markers over 11 linkage groups is discussed and a newer version of the common bean core linkage map is proposed.
Resumo:
Marker assisted selection depends on the identification of tightly linked association between marker and the trait of interest. In the present work, functional (EST-SSRs) and genomic (gSSRs) microsatellite markers were used to detect putative QTLs for sugarcane yield components (stalk number, diameter and height) and as well as for quality parameters (Brix, Pol and fibre) in plant cane. The mapping population (200 individuals) was derived from a bi-parental cross (IACSP95-3018 x IACSP93-3046) from the IAC Sugarcane Breeding Program. As the map is under construction, single marker trait association analysis based on the likelihood ratio test was undertaken to detect the QTLs. Of the 215 single dose markers evaluated (1:1 and 3:1), 90 (42%) were associated with putative QTLs involving 43 microsatellite primers (18 gSSRs and 25 EST-SSRs). For the yield components, 41 marker/trait associations were found: 20 for height, 6 for diameter and 15 for stalk number. An EST-SSRs marker with homology to non-phototropic hypocotyls 4 (NPH4) protein was associated with a putative QTL with positive effect for diameter as also with a negative effect for stalk number. In relation to the quality parameters, 18 marker trait associations were found for Brix, 19 for Pol, and 12 for fibre. For fibre, 58% of the QTLs detected showed a negative effect on this trait. Some makers associated with QTLs with a negative effect for fibre showed a positive effect for Pol, reflecting the negative correlation generally observed between these traits.
Resumo:
Variations in the inulin contents have been detected in rhizophores of Vernonia herbacea during the phenological cycle. These variations indicate the occurrence of active inulin synthesis and depolymerization throughout the cycle and a role for this carbohydrate as a reserve compound. 1-Fructan exohydrolase (1-FEH) is the enzyme responsible for inulin depolymerization, and its activity has been detected in rhizophores of sprouting plants. Defoliation and low temperature are enhancer conditions of this 1-FEH activity. The aim of the present work was the cloning of this enzyme. Rhizophores were collected from plants induced to sprout, followed by storage at 5C. A full length 1-FEH cDNA sequence was obtained by PCR and inverse PCR techniques, and expressed in Pichia pastoris. Cold storage enhances FEH gene expression. Vh1-FEH was shown to be a functional 1-FEH, hydrolyzing predominantly -2,1 linkages, sharing high identity with chicory FEH sequences, and its activity was inhibited by 81 in the presence of 10 mM sucrose. In V. herbacea, low temperature and sucrose play a role in the control of fructan degradation. This is the first study concerning the cloning and functional analysis of a 1-FEH cDNA of a native species from the Brazilian Cerrado. Results will contribute to understanding the role of fructans in the establishment of a very successful fructan flora of the Brazilian Cerrado, subjected to water limitation and low temperature during winter.
Resumo:
LEITE, V. G., F. S. MARQUIAFAVEL, D. P. MORAES, AND S. P. TEIXEIRA (Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo (USP), Av. do Cafe, s/n, 14040-903 Ribeirao Preto, SP, Brazil). Fruit anatomy of Neotropical species of Indigofera (Leguminosae, Papilionoideae) with functional and taxonomic implications. J. Torrey Bot. Soc. 136: 203-211. 2009-This work reports on the fruit surface and anatomy of seven Neotropical species of Indigofera (I. campestris Bong. ex Benth., I. hirsuta L., I. lespedeziodes Kunth, I. microcarpa Desv., I. spicata Forssk., I. suffruticosa Mill., and I. truxillensis Kunth) to help species diagnosis and clarify the fruit type classification. Flowers and fruits at several stages of development were removed from living material, fixed, and examined with scanning electron (surface analyses) and light microscopies (histological analyses). Species showed differences in relation to the number of exocarp layers, secretory trichome morphology and distribution, presence of stomata, phenolic idioblast size and distribution in mesocarp, the number and arrangement of endocarp fibers, and the presence of it separation tissue. It is noteworthy that no separation tissue was observed in L microcarpa and I. suffruticosa, although they have dehiscent fruits, which indicates it delayed dehiscence. The present work confirms that fruit anatomical characters can be utilized as it tool for fruit type classification, especially in Indigofera, the third largest genus of Leguminosae.
Resumo:
Production of sorghum [Sorghum bicolor (L.) Moench], an important cereal crop in semiarid regions of the world, is often limited by drought. When water is limiting during the grain-filling period, hybrids possessing the stay-green trait maintain more photosynthetically active leaves than hybrids not possessing this trait. To improve yield under drought, knowledge of the extent of genetic variation in green leaf area retention is required. Field studies were undertaken in north-eastern Australia on a cracking and self-mulching gray clay to determine the effects of water regime and hybrid on the components of green leaf area at maturity (GLAM). Nine hybrids varying in stay-green were grown under a fully irrigated control, postflowering water deficit, and terminal (pre- and postflowering) water deficit. Water deficit reduced GLAM by 67% in the terminal drought treatment compared with the fully irrigated control. Under terminal water deficit, hybrids possessing the B35 and KS19 sources of stay-green retained more GLAM (1260 cm(2) plant(-1)) compared with intermediate (780 cm(2) plant(-1)) and senescent (670 cm(2) plant(-1)) hybrids. RQL12 hybrids (KS19 source of stay-green) displayed delayed onset and reduced rate of senescence; A35 hybrids displayed only delayed onset. Visual rating of green leaf retention was highly correlated with measured GLAM, although this procedure is constrained by an inability to distinguish among the functional mechanisms determining the phenotype. Linking functional rather than phenotypic differences to molecular markers may improve the efficiency of selecting for traits such as stay-green.
Resumo:
The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.
Resumo:
Plant-antivenom is a computational Websystem about medicinal plants with anti-venom properties. The system consists of a database of these plants, including scientific publications on this subject and amino acid sequences of active principles from venomous animals. The system relates these data allowing their integration through different search applications. For the development of the system, the first surveys were conducted in scientific literature, allowing the creation of a publication database in a library for reading and user interaction. Then, classes of categories were created, allowing the use of tags and the organization of content. This database on medicinal plants has information such as family, species, isolated compounds, activity, inhibited animal venoms, among others. Provision is made for submission of new information by registered users, by the use of wiki tools. Content submitted is released in accordance to permission rules defined by the system. The database on biological venom protein amino acid sequences was structured from the essential information from National Center for Biotechnology Information (NCBI). Plant-antivenom`s interface is simple, contributing to a fast and functional access to the system and the integration of different data registered on it. Plant-antivenom system is available on the Internet at http://gbi.fmrp.usp.br/plantantivenom.
Resumo:
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P-1 and P-2), F-1, F-2, and both backcross generations (B-1 and B-2) derived from crossing the F-1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes.
Resumo:
Participatory plant breeding (PPB) has been suggested as an effective alternative to formal plant breeding (FPB) as a breeding strategy for achieving productivity gains under low input conditions. With genetic progress through PPB and FPB being determined by the same genetic variables, the likelihood of success of PPB approaches applied in low input target conditions was analyzed using two case studies from FPB that have resulted in significant productivity gains under low input conditions: (1) breeding tropical maize for low input conditions by CIMMYT, and (2) breeding of spring wheat for the highly variable low input rainfed farming systems in Australia. In both cases, genetic improvement was an outcome of long-term investment in a sustained research effort aimed at understanding the detail of the important environmental constraints to productivity and the plant requirements for improved adaptation to the identified constraints, followed up by the design and continued evaluation of efficient breeding strategies. The breeding strategies used differed between the two case studies but were consistent in their attention to the key determinants of response to selection: (1) ensuring adequate sources of genetic variation and high selection pressures for the important traits at all stages of the breeding program, (2) use of experimental procedures to achieve high levels of heritability in the breeding trials, and (3) testing strategies that achieved a high genetic correlation between performance of germplasm in the breeding trials and under on-farm conditions. The implications of the outcomes from these FPB case studies for realizing the positive motivations for adopting PPB strategies are discussed with particular reference for low input target environment conditions.