925 resultados para pituitary hormonal deficiency
Resumo:
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.
Resumo:
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Resumo:
Plants orient their growth depending on directional stimuli such as light and gravity, in a process known as tropic response. Tropisms result from asymmetrical accumulation of auxin across the responding organ relative to the direction of the stimulus, which causes differential growth rates on both sides of the organ. Here, we show that gibberellins (GAs) attenuate the gravitropic reorientation of stimulated hypocotyls of dark-grown Arabidopsis (Arabidopsis thaliana) seedlings. We show that the modulation occurs through induction of the expression of the negative regulator of auxin signaling INDOLE-3-ACETIC ACID INDUCIBLE19/MASSUGU2. The biological significance of this regulatory mechanism involving GAs and auxin seems to be the maintenance of a high degree of flexibility in tropic responses. This notion is further supported by observations that GA-deficient seedlings showed a much lower variance in the response to gravity compared to wild-type seedlings and that the attenuation of gravitropism by GAs resulted in an increased phototropic response. This suggests that the interplay between auxin and GAs may be particularly important for plant orientation under competing tropic stimuli.
Resumo:
Applied topically to larvae of Rhodnius prolixus Stal, Triatoma infestans (Klug) and Panstrongylus herreri Wygodzinsky, vectors of Trypanosoma cruzi, the causative agent of Chagas'disease, a synthetic, furan-containing anti-juvenile hormonal compound, 2-(2-ethoxyethoxy)ethyl furfuryl ether induced a variety of biomorphological alterations, including precocious metamorphosis into small adultoids with adult abdominal cuticle, ocelli, as well as rudimentary adultoid wings. Some adultoids died during ecdysis and were confined within the old cuticle. The extension of these biomorphological responses is discussed in terms of the complexity of the action of anti-juvenile hormonal compounds during the development of triatomines
Resumo:
A longitudinal study was performed with sera and urine of patients with acquired immune deficiency syndrome (AIDS), taken before, during and after clinically Toxoplasma infection. The tested patients were followed for an average of two years. The titres of the specific IgG and IgM antibodies were measured by an indirect fluorescent antibody test (IFAT), and the appearance of circulating antigens of T. gondii was determined in 36 urine samples of 13 patients with neurotoxoplasmosis by means of the coagglutination test. The presence of T. gondii antigens in the urine of AIDS patients by this test was correlated with the immunoblot technique, with clinical symptoms and also with pathological findings. Our results indicate that the detection of T. gondii antigens in the urine of AIDS patients can be regarded as a rapid and efficient method for the diagnosis of acute toxoplasmosis
Resumo:
In order to evaluate the effect of head injury in severely traumatized patients on the response of ACTH, GH, PRL, and TSH plasma levels, 36 patients were prospectively studied over 5 consecutive days following injury. They were divided into three groups: Group I, severe isolated head injury (n = 14); Group II, multiple injury combined with severe head injury (n = 12); Group III, multiple injury without head injury (n = 10). No significant trend was observed during the 5 consecutive days. The following changes in plasma levels were observed, compared to normal reference value (median values): ACTH was normal in the three groups; PRL was elevated in Group II and normal in the other groups; GH was elevated in all groups; TSH was elevated in Group III and reduced in Groups I and II. Intergroup comparisons showed significantly lower plasma levels for PRL (p less than 0.05) and TSH (p less than 0.01) in Groups I and II, i.e., head-injured patients, compared to Group III, i.e., traumatized patients without head injury. A relationship was observed between the severity of head injury, as expressed by Glasgow Coma Score, intracranial pressure levels, outcome, and TSH and PRL levels.
Resumo:
A 5-year-old previously healthy boy was admitted for abdominal pain and vomiting. Physical examination showed tachypnoe (32/min), hepatomegaly and painful palpation of the upper right abdominal quadrant. Laboratory tests were normal except for elevated ammonium (202mcmol/l). Chest X-ray was performed, showing cardiomegaly and interstitial edema. Transthoracic echocardiography revealed dilated left cavities and LV hypertrophy together with a diffuse hypokinesia and LVEF of 30-40%. Diuretics and ACE-inhibitors were introduced. At that time, the differential diagnosis for the DCM included myocarditis, congenital or genetic, metabolic or autoimmune disease. The next day, the boy underwent cardiac magnetic resonance (CMR) examination, showing a severe dilatation of the LV with an end-diastolic diameter of 50mm and a volume of 150ml. LVEF was 20% with diffuse LV hypokinesia (Fig. 1). No late enhancement was present after Gadolinium injection, ruling out myocarditis. Further laboratory metabolic analysis indicated severely decreased total and free carnitin levels and low renal carnitin reabsorption, corroborating the diagnosis of primary carnitin deficiency (PCD). Carnitin substitution was initiated. The clinical condition rapidly improved. No symptoms of heart failure were present anymore. A follow-up CMR performed 9 months later confirmed the recovery. LV end-diastolic volume decreased from 150ml to 66ml, LVEF increased from 20% to 55% (Fig. 2). Late enhancement was absent after Gadolinum injection (Fig. 3).Carnitin is required for the transport of fatty acids from the cytosol into mitochondria during lipid breakdown. 75% of carnitin is obtained from food, 25% is endogenously synthesized. PCD is an autosomal recessive disorder resulting from impairment of a transporter activity, caused by mutation of the SLC22A5 gene. Incidence is about 1 in 40'000 newborns. Diagnosis is usually made at age 1 to 7. Three forms of PCD are described. In the form associated with cardiomyopathy, the disease is progressive and patient die from heart failure if not treated. Substitution of L-Carnitin leads to a dramatic improvement of disease course.This case underlines the crucial role of etiologic diagnostics in this reversible form of DCM. Early diagnostics and therapy are critical for the prognosis of the patient. This is furthermore an example of a role played by CMR in the diagnostic work-up of heart failure and its follow-up under therapy.
Resumo:
Vitamin K deficiency bleeding within the first 24 h of life is caused in most cases by maternal drug intake (e.g. coumarins, anticonvulsants, tuberculostatics) during pregnancy. Haemorrhage is often life-threatening and usually not prevented by vitamin K prophylaxis at birth. We report a case of severe intracranial bleeding at birth secondary to phenobarbital-induced vitamin K deficiency and traumatic delivery. Burr hole trepanations of the skull were performed and the subdural haematoma was evacuated. Despite the severe prognosis, the infant showed an unexpected good recovery. At the age of 3 years, neurological examinations were normal as was the EEG at the age of 9 months. CT showed close to normal intracranial structures. CONCLUSION: This case report stresses the importance of antenatal vitamin K prophylaxis and the consideration of a primary Caesarean section in maternal vitamin K deficiency states and demonstrates the successful management of massive subdural haemorrhage by a limited surgical approach.
Resumo:
The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.
Resumo:
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune reactions. While TREM-1-amplified responses likely aid an improved detection and elimination of pathogens, excessive production of cytokines and oxygen radicals can also severely harm the host. Studies addressing the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis have so far mostly relied on the administration of TREM-1 fusion proteins or peptides representing part of the extracellular domain of TREM-1. However, binding of these agents to the yet unidentified TREM-1 ligand could also impact signaling through alternative receptors. More importantly, controversial results have been obtained regarding the requirement of TREM-1 for microbial control. To unambiguously investigate the role of TREM-1 in homeostasis and disease, we have generated mice deficient in Trem1. Trem1(-/-) mice are viable, fertile and show no altered hematopoietic compartment. In CD4(+) T cell- and dextran sodium sulfate-induced models of colitis, Trem1(-/-) mice displayed significantly attenuated disease that was associated with reduced inflammatory infiltrates and diminished expression of pro-inflammatory cytokines. Trem1(-/-) mice also exhibited reduced neutrophilic infiltration and decreased lesion size upon infection with Leishmania major. Furthermore, reduced morbidity was observed for influenza virus-infected Trem1(-/-) mice. Importantly, while immune-associated pathologies were significantly reduced, Trem1(-/-) mice were equally capable of controlling infections with L. major, influenza virus, but also Legionella pneumophila as Trem1(+/+) controls. Our results not only demonstrate an unanticipated pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate that therapeutic blocking of TREM-1 in distinct inflammatory disorders holds considerable promise by blunting excessive inflammation while preserving the capacity for microbial control.