993 resultados para phospholipase A(2)
Resumo:
Crotoxin is a neurotoxin from Crotalus durissus terrificus venom that shows immunomodulatory, anti-inflammatory, antimicrobial, antitumor and analgesic activities. Structurally, this toxin is a heterodimeric complex composed by a toxic basic PLA2 (Crotoxin B or CB) non-covalently linked to an atoxic non-enzymatic and acidic component (Crotapotin, Crotoxin A or CA). Several CA and CB isoforms have been isolated and characterized, showing that the crotoxin venom fraction is, in fact, a mixture of different molecules derived from the combination of distinct subunit isoforms. Intercro (IC) is a protein from the same snake venom which presents high similarity in primary structure to CB, indicating that it could be an another isoform of this toxin. In this work, we compare IC to the crotoxin complex (CA/CB) and/or CB in order to understand its functional aspects. The experiments with IC revealed that it is a new toxin with different biological activities from CB, keeping its catalytic activity but presenting low myotoxicity and absence of neurotoxic activity. The results also indicated that IC is structurally similar to CB isoforms, but probably it is not able to form a neurotoxic active complex with crotoxin A as observed for CB. Moreover, structural and phylogenetic data suggest that IC is a new toxin with possible toxic effects not related to the typical CB neurotoxin. © 2013.
Resumo:
In mammalian species, oocyte activation is initiated by oscillations in the intracellular concentration of free calcium ([Ca2+]i), which are also essential to allow embryonic development. To date, evidence supporting the hypothesis that a sperm factor is responsible for initiating oocyte activation has been presented in various mammalian species. Among the possible candidates to be the active sperm factor is the novel sperm-specific phospholipase C ζ (PLCζ), which besides its testis-specific expression is capable of initiating [Ca2+]i oscillations. In this study, we investigated the presence of PLCζ in the sperm of the domestic cat and whether normospermic and teratospermic cats differ in their PLCζ expression. Immunoblotting with anti-PLCζ antibodies confirmed the presence of an immunoreactive band of ~70 kDa in whole sperm lysates of domestic cat as well as in both soluble and insoluble fractions from this sperm. Additional immunoreactive bands, probably C- and N-terminal truncated versions of PLCζ, were also visualized in the soluble sperm fractions. Interestingly, immunoreactivity of PLCζ was detectable in teratospermic sperm, although with slightly less intensity than in normospermic sperm. In conclusion, domestic cat sperm express PLCζ in both cytosolic and high-pH fractions, which is consistent with data in other mammals. Sperm from teratospermic cats also express PLCζ, albeit at reduced concentrations, which may affect the fertility of these males. © 2013 Elsevier Inc..
Resumo:
A myotoxic phospholipase A2, named bothropstoxin II (BthTX-II), was isolated from the venom of the South American snake Bothrops jararacussu and the pathogenesis of myonecrosis induced by this toxin was studied in mice. BthTX-II induced a rapid increase in plasma creatine kinase levels. Histological and ultrastructural observations demonstrate that this toxin affects muscle fibers by first disrupting the integrity of plasma membrane, as delta lesions were the earliest morphological alteration and since the plasma membrane was interrupted or absent in many portions. In agreement with this hypothesis, BthTX-II released peroxidase entrapped in negatively charged multilamellar liposomes and behaved as an amphiphilic protein in charge shift electrophoresis, an indication that its mechanism of action might be based on the interaction and disorganization of plasma membrane phospholipids. Membrane damage was followed by a complex series of morphological alterations in intracellular structures, most of which are probably related to an increase in cytosolic calcium levels. Myofilaments became hypercontracted into dense clumps which alternated with cellular spaces devoid of myofibrillar material. Later on, myofilaments changed to a hyaline appearance with a more uniform distribution. Mitochondria were drastically affected, showing high amplitude swelling, vesiculation of cristae, formation of flocculent densities, and membrane disruption. By 24 hr, abundant polymorphonuclear leucocytes and macrophages were observed in the interstitial space as well as inside necrotic fibers. Muscle regeneration proceeded normally, as abundant myotubes and regenerating myofibers were observed 7 days after BthTX-II injection. By 28 days regenerating fibers had a diameter similar to that of adult muscle fibers, although they presented two distinctive features: central location of nuclei and some fiber splitting. This good regenerative response may be explained by the observation that BthTX-II does not affect blood vessels, nerves, or basal laminae. © 1991.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells. (J Histochem Cytochem 60:386-396, 2012)
Antioxidant and inflammatory aspects of lipoprotein-associated phospholipase A2 (Lp-PLA2 ): a review
Resumo:
The association of cardiovascular events with Lp-PLA2 has been studied continuously today. The enzyme has been strongly associated with several cardiovascular risk markers and events. Its discovery was directly related to the hydrolysis of the platelet-activating factor and oxidized phospholipids, which are considered protective functions. However, the hydrolysis of bioactive lipids generates lysophospholipids, compounds that have a pro-inflammatory function. Therefore, the evaluation of the distribution of Lp-PLA2 in the lipid fractions emphasized the dual role of the enzyme in the inflammatory process, since the HDL-Lp-PLA2 enzyme contributes to the reduction of atherosclerosis, while LDL-Lp-PLA2 stimulates this process. Recently, it has been verified that diet components and drugs can influence the enzyme activity and concentration. Thus, the effects of these treatments on Lp-PLA2 may represent a new kind of prevention of cardiovascular disease. Therefore, the association of the enzyme with the traditional assessment of cardiovascular risk may help to predict more accurately these diseases.
Resumo:
Abstract Background Lipoprotein-associated phospholipase A2 activity (Lp-PLA2) is a good marker of cardiovascular risk in adults. It is strongly associated with stroke and many others cardiovascular events. Despite this, the impact of obesity on this enzyme activity and its relation to biomarkers of cardiovascular disease in adolescents is not very well investigated. The purpose of this article is to evaluate the influence of obesity and cardiometabolic markers on Lp-PLA2 activity in adolescents. Results This cross-sectional study included 242 adolescents (10–19 years) of both gender. These subjects were classified in Healthy Weight (n = 77), Overweight (n = 82) and Obese (n = 83) groups. Lipid profile, glucose, insulin, HDL size, LDL(−) and anti-LDL(−) antibodies were analyzed. The Lp-PLA2 activity was determined by a colorimetric commercial kit. Body mass index (BMI), waist circumference and body composition were monitored. Food intake was evaluated using three 24-hour diet recalls. The Lp-PLA2 activity changed in function to high BMI, waist circumference and fat mass percentage. It was also positively associated with HOMA-IR, glucose, insulin and almost all variables of lipid profile. Furthermore, it was negatively related to Apo AI (β = −0.137; P = 0.038) and strongly positively associated with Apo B (β = 0.293; P < 0.001) and with Apo B/Apo AI ratio (β = 0.343; P < 0.001). The better predictor model for enzyme activity, on multivariate analysis, included Apo B/Apo AI (β = 0.327; P < 0.001), HDL size (β = −0.326; P < 0.001), WC (β = 0.171; P = 0.006) and glucose (β = 0.119; P = 0.038). Logistic regression analysis demonstrated that changes in Apo B/Apo AI ratio were associated with a 73.5 times higher risk to elevated Lp-PLA2 activity. Conclusions Lp-PLA2 changes in function of obesity, and that it shows important associations with markers of cardiovascular risk, in particular with waist circumference, glucose, HDL size and Apo B/Apo AI ratio. These results suggest that Lp-PLA2 activity can be a cardiovascular biomarker in adolescence.
Resumo:
Angiotensin II (Ang II), acting via the AT1 receptor, induces an increase in intracellular calcium [Ca(2+)]i that then interacts with calmodulin (CaM). The Ca(2+)/CaM complex directly or indirectly activates sodium hydrogen exchanger 1 (NHE1) and phosphorylates calmodulin kinase II (CaMKII), which then regulates sodium hydrogen exchanger 3 (NHE3) activity. In this study, we investigated the cellular signaling pathways responsible for Ang II-mediated regulation of NHE1 and NHE3 in Madin-Darby canine kidney (MDCK) cells. The NHE1- and NHE3-dependent pHi recovery rates were evaluated by fluorescence microscopy using the fluorescent probe BCECF/AM, messenger RNA was evaluated with the reverse transcription polymerase chain reaction (RT-PCR), and protein expression was evaluated by immunoblot. We demonstrated that treatment with Ang II (1pM or 1 nM) for 30 min induced, via the AT1 but not the AT2 receptor, an equal increase in NHE1 and NHE3 activity that was reduced by the specific inhibitors HOE 694 and S3226, respectively. Ang II (1 nM) did not change the total expression of NHE1, NHE3 or calmodulin, but it induced CaMKII, cRaf-1, Erk1/2 and p90(RSK) phosphorylation. The stimulatory effects of Ang II (1 nM) on NHE1 or NHE3 activity or protein abundance was reduced by ophiobolin-A (CaM inhibitor), KN93 (CaMKII inhibitor) or PD98059 (Mek inhibitor). These results indicate that after 30 min, Ang II treatment may activate G protein-dependent pathways, including the AT1/PLC/Ca(2+)/CaM pathway, which induces CaMKII phosphorylation to stimulate NHE3 and induces cRaf-1/Mek/Erk1/2/p90(RSK) activity to stimulate NHE1
Resumo:
The cholecystokinin-2 receptor (CCK2R), is expressed in cancers where it contributes to tumor progression. The CCK2R is over-expressed in a sub-set of tumors, allowing its use in tumor targeting with a radiolabel ligand. Since discrepancies between mRNA levels and CCK2R binding sites were noticed, we searched for abnormally spliced variants in tumors from various origins having been previously reported to frequently express cholecystokinin receptors, such as medullary thyroid carcinomas, gastrointestinal stromal tumors, leiomyomas and leiomyosarcomas, and gastroenteropancreatic tumors. A variant of the CCK2R coding for a putative five-transmembrane domains receptor has been cloned. This variant represented as much as 6% of CCK2R levels. Ectopic expression in COS-7 cells revealed that this variant lacks biological activity due to its sequestration in endoplasmic reticulum. When co-expressed with the CCK2R, this variant diminished membrane density of the CCK2R and CCK2R-mediated activity (phospholipase-C and ERK activation). In conclusion, a novel splice variant acting as a dominant negative on membrane density of the CCK2R may be of importance for the pathophysiology of certain tumors and for their in vivo CCK2R-targeting.
Resumo:
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is abundant in serum and has a well-characterized biochemistry; however, its physiological role is completely unknown. Previous investigations into GPI-PLD have focused on the adult animal or on in vitro systems and a putative role in development has been neither proposed nor investigated. We describe the first evidence of GPI-PLD expression during mouse embryonic ossification. GPI-PLD expression was detected predominantly at sites of skeletal development, increasing during the course of gestation. GPI-PLD was observed during both intramembraneous and endochondral ossification and localized predominantly to the extracellular matrix of chondrocytes and to primary trabeculae of the skeleton. In addition, the mouse chondrocyte cell line ATDC5 expressed GPI-PLD after experimental induction of differentiation. These results implicate GPI-PLD in the process of bone formation during mouse embryogenesis.
Resumo:
The mammalian target of rapamycin (MTOR) assembles into two distinct complexes: mTOR complex 1 (mTORC1) is predominantly cytoplasmic and highly responsive to rapamycin, whereas mTOR complex 2 (mTORC2) is both cytoplasmic and nuclear, and relatively resistant to rapamycin. mTORC1 and mTORC2 phosphorylatively regulate their respective downstream effectors p70S6K/4EBP1, and Akt. The resulting activated mTOR pathways stimulate protein synthesis, cellular proliferation, and cell survival. Moreover, phospholipase D (PLD) and its product, phosphatidic acid (PA) have been implicated as one of the upstream activators of mTOR signaling. In this study, we investigated the activation status as well as the subcellular distribution of mTOR, and its upstream regulators and downstream effectors in endometrial carcinomas (ECa) and non-neoplastic endometrial control tissue. Our data show that the mTORC2 activity is selectively elevated in endometrial cancers as evidenced by a predominant nuclear localization of the activated form of mTOR (p-mTOR at Ser2448) in malignant epithelium, accompanied by overexpression of nuclear p-Akt (Ser473), as well as overexpression of vascular endothelial growth factor (VEGF)-A isoform, the latter a resultant of target gene activation by mTORC2 signaling via hypoxia-inducible factor (HIF)-2alpha. In addition, expression of PLD1, one of the two major isoforms of PLD in human, is increased in tumor epithelium. In summary, we demonstrate that the PLD1/PA-mTORC2 signal pathway is overactivated in endometrial carcinomas. This suggests that the rapamycin-insensitive mTORC2 pathway plays a major role in endometrial tumorigenesis and that therapies designed to target the phospholipase D pathway and components of the mTORC2 pathway should be efficacious against ECa.
Resumo:
Optimal norepinephrine levels in the prefrontal cortex (PFC) increase delay-related firing and enhance working memory, whereas stress-related or pathologically high levels of norepinephrine are believed to inhibit working memory via α1 adrenoceptors. However, it has been shown that activation of Gq-coupled and phospholipase C-linked receptors can induce persistent firing, a cellular correlate of working memory, in cortical pyramidal neurons. Therefore, despite its importance in stress and cognition, the exact role of norepinephrine in modulating PFC activity remains elusive. Using electrophysiology and optogenetics, we report here that norepinephrine induces persistent firing in pyramidal neurons of the PFC independent of recurrent fast synaptic excitation. This persistent excitatory effect involves presynaptic α1 adrenoceptors facilitating glutamate release and subsequent activation of postsynaptic mGluR5 receptors, and is enhanced by postsynaptic α2 adrenoceptors inhibiting HCN channel activity. Activation of α2 adrenoceptors or inhibition of HCN channels also enhances cholinergic persistent responses in pyramidal neurons, providing a mechanism of crosstalk between noradrenergic and cholinergic inputs. The present study describes a novel cellular basis for the noradrenergic control of cortical information processing and supports a synergistic combination of intrinsic and network mechanisms for the expression of mnemonic properties in pyramidal neurons.
Resumo:
Our previous gene expression analysis identified phospholipase A2 group IIA (PLA2G2A) as a potential biomarker of ovarian endometriosis. The aim of this study was to evaluate PLA2G2A mRNA and protein levels in tissue samples (endometriomas and normal endometrium) and in serum and peritoneal fluid of ovarian endometriosis patients and control women. One-hundred and sixteen women were included in this study: the case group included 70 ovarian endometriosis patients, and the control group included 38 healthy women and 8 patients with benign ovarian cysts. We observed 41.6-fold greater PLA2G2A mRNA levels in endometrioma tissue, compared to normal endometrium tissue. Using Western blotting, PLA2G2A was detected in all samples of endometriomas, but not in normal endometrium, and immunohistochemistry showed PLA2G2A-specific staining in epithelial cells of endometrioma paraffin sections. However, there were no significant differences in PLA2G2A levels between cases and controls according to ELISA of peritoneal fluid (6.0 ± 4.4 ng/ml, 6.6 ± 4.3 ng/ml; p = 0.5240) and serum (2.9 ± 2.1 ng/ml, 3.1 ± 2.2 ng/ml; p = 0.7989). Our data indicate that PLA2G2A is implicated in the pathophysiology of ovarian endometriosis, but that it cannot be used as a diagnostic biomarker.
Resumo:
Stimulation of LM5 cells with the phorbol ester 4$\beta$-phorbol 12-myristate 13-acetate (PMA), causes a 2-4 fold sensitization of hormonally-stimulated adenylyl cyclase (AC) activity. This effect is thought to be due to protein kinase C (PKC)-mediated phosphorylation of either G$\sb{\rm i}$ or the catalytic subunit of AC. PKC are components of the phosphatidylinositol-4,5-bisphosphate phospholipase C (PIP$\sb2$-PLC) pathway. The currently accepted model of this pathway is that its activation by an agonist results in the production of inositol 1,4,5-triphosphate (IP$\sb3$) which causes Ca$\sp{++}$ mobilization, and 1,2-diacylglycerols (DAG) which activate PKC. Based on this model, we predicted that stimulation of purinergic and muscarinic receptors with the agonists ATP and carbachol (CCh), respectively in the LM5 cells, should sensitize AC. Surprisingly we found that only stimulation of the purinergic receptors in these cells caused a sensitization of PGE$\sb1$-stimulated AC measured in cell-free assays.^ We hypothesized that ATP-and CCh-stimulated differential DAG production contributes to the effectiveness of these two agonists to sensitize PGE$\sb1$-stimulated AC activity. To test this hypothesis directly, we performed a combined high-performance liquid chromatography and gas-liquid chromatography analysis of the DAG produced in the LM5 cells in response to stimulation with ATP and CCh.^ We found that both ATP and CCh increased levels of 23 species of DAG. Relative to the control levels (0.261 nmol DAG/100 nmol phospholipid) the CCh-induced increase in DAG levels was 280% (0.738 $\pm$ 0.051 nmol DAG/100 nmol phospholipid) whereas the ATP-induced levels increased 180% (0.441 t 0.006 nmol DAG/100 nmol phospholipid). Neither agonist created new species or eliminated the existing ones. The major species which comprised $\approx$50% of the total cellular DAG in all of the groups were 16:0-18:1, 18:0-18:1, 18:1-18:1, and 18:0-20:4. CCh was more effective than ATP at stimulating these major DAG species.^ It is concluded that factor(s) other than DAG contribute(s) to the differences between ATP-and CCh-sensitization of PGE$\sb1$-stimulated AC activity in the LM5 cells. ^
Resumo:
In the COS7 cells transfected with cDNAs of the Kir6.2, SUR2A, and M1 muscarinic receptors, we activated the ATP-sensitive potassium (KATP) channel with a K+ channel opener and recorded the whole-cell KATP current. The KATP current was reversibly inhibited by the stimulation of the M1 receptor, which is linked to phospholipase C (PLC) by the Gq protein. The receptor-mediated inhibition was observed even when protein kinase C (PKC) was inhibited by H-7 or by chelating intracellular Ca2+ with 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetate (BAPTA) included in the pipette solution. However, the receptor-mediated inhibition was blocked by U-73122, a PLC inhibitor. M1-receptor stimulation failed to inhibit the KATP current activated by the injection of exogenous phosphatidylinositol 4,5-bisphosphate (PIP2) through the whole-cell patch pipette. The receptor-mediated inhibition became irreversible when the replenishment of PIP2 was blocked by wortmannin (an inhibitor of phosphatidylinositol kinases), or by including adenosine 5′-[β,γ–imido]triphosphate (AMPPNP, a nonhydrolyzable ATP analogue) in the pipette solution. In inside-out patch experiments, the ATP sensitivity of the KATP channel was significantly higher when the M1 receptor in the patch membrane was stimulated by acetylcholine. The stimulatory effect of pinacidil was also attenuated under this condition. We postulate that stimulation of PLC-linked receptors inhibited the KATP channel by increasing the ATP sensitivity, not through PKC activation, but most probably through changing PIP2 levels.