860 resultados para performaceoptimazation soft error


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In metallurgic plants a high quality metal production is always required. Nowadays soft computing applications are more often used for automation of manufacturing process and quality control instead of mechanical techniques. In this thesis an overview of soft computing methods presents. As an example of soft computing application, an effective model of fuzzy expert system for the automotive quality control of steel degassing process was developed. The purpose of this work is to describe the fuzzy relations as quality hypersurfaces by varying number of linguistic variables and fuzzy sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this in vitro experimental study was to perform histological evaluation of the thermal effect produced on soft tissue irradiated with CO2, Er,Cr:YSGG or diode lasers. Study design: Porcine oral mucosa samples were irradiated with Er,Cr:YSGG laser at 1 W with and without water / air spray, at 2 W with and without water / air spray, and at 4 W with water / air spray, with CO2 laser at 1 W, 2 W, 10 W, 20 W continuous mode and 20 W pulsed mode and diode laser at 2W, 5W, and 10W pulsed mode. The thermal effect was evaluated measuring the width of damaged tissue adjacent to the incision, stained positively for hyalinized tissue with Hematoxylin-Eosin and Masson Trichrome stains. Besides, histological changes in the irradiated tissue were described using subjective grading scales. Results: The evaluated lasers developed a wide range of thermal damage with significant differences between groups. The samples with lowest thermal effect were those irradiated with Er,Cr:YSGG laser using water / air spray, followed by CO2 and diode lasers. Conclusions: Emission parameters of each laser system may influence the thermal damage inflicted on the soft tissue, however, the wave length of each laser determines the absorption rate characteristics of every tissue and the thermal effect

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies evaluation of software development practices through an error analysis. The work presents software development process, software testing, software errors, error classification and software process improvement methods. The practical part of the work presents results from the error analysis of one software process. It also gives improvement ideas for the project. It was noticed that the classification of the error data was inadequate in the project. Because of this it was impossible to use the error data effectively. With the error analysis we were able to show that there were deficiencies in design and analyzing phases, implementation phase and in testing phase. The work gives ideas for improving error classification and for software development practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el sector suroriental de la Cuenca del Ebro, la inclinación paleomagnética obtenida en las sucesiones aluviales oligocenas es considerablemente menor que la esperable, si se considera la paleolatitud de referencia calculada para esa región durante el Oligoceno. Este error de inclinación puede deberse a diversos factores, como el control hidrodinámica de las partículas magnéticas en el medio deposicional, la compactación diferencial del sedimento durante el enterramiento, o bien a la deformación tectónica. Este trabajo se ha centrado en su estudio en dos sucesiones dominantemente aluviales, donde previamente se había establecido su magnetoestratigrafia. Las litofacies aluviales y lacustres estudiadas se han agrupado en cinco grupos: areniscas grises, areniscas rojas y versicolores, limos rojos, lutitas rojas y calizas. Se ha demostrado la existencia de una correlación entre la abundancia de filosilicatos y el error de inclinación. De esta manera, las litofacies con un bajo porcentaje de filosilicatos (calizas y areniscas grises) presentan errores de unos 5', estadisticarnente no significativos, con respecto a la inclinación de referencia. Por el contrario, en materiales con un porcentaje más elevado de filosilicatos (limos y arcillas) el error puede llegar a los 25'. Este hecho no tiene repercusión en la interpretación de las polaridades magnéticas, pero si en las reconstmcciones palinspásticas y paleogeográficas basadas en los cálculos de paleolatitudes a partir de las paleoinclinaciones. Los resultados obtenidos demuestran la necesidad de cautela en la propuesta de conclusiones basadas exclusivamente en este tipo de información.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations were performed to study the ion and water distribution around a spherical charged nanoparticle. A soft nanoparticle model was designed using a set of hydrophobic interaction sites distributed in six concentric spherical layers. In order to simulate the effect of charged functionalyzed groups on the nanoparticle surface, a set of charged sites were distributed in the outer layer. Four charged nanoparticle models, from a surface charge value of −0.035 Cm−2 to − 0.28 Cm−2, were studied in NaCl and CaCl2 salt solutions at 1 M and 0.1 M concentrations to evaluate the effect of the surface charge, counterion valence, and concentration of added salt. We obtain that Na + and Ca2 + ions enter inside the soft nanoparticle. Monovalent ions are more accumulated inside the nanoparticle surface, whereas divalent ions are more accumulated just in the plane of the nanoparticle surface sites. The increasing of the the salt concentration has little effect on the internalization of counterions, but significantly reduces the number of water molecules that enter inside the nanoparticle. The manner of distributing the surface charge in the nanoparticle (uniformly over all surface sites or discretely over a limited set of randomly selected sites) considerably affects the distribution of counterions in the proximities of the nanoparticle surface.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microquasars are promising candidates to emit high-energy gamma-rays. Moreover, statistical studies show that variable EGRET sources at low galactic latitudes could be associated with the inner spiral arms. The variable nature and the location in the Galaxy of the high-mass microquasars, concentrated in the galactic plane and within 55 degrees from the galactic center, give to these objects the status of likely counterparts of the variable low-latitude EGRET sources. We consider in this work the two most variable EGRET sources at low-latitudes: 3EG J1828+0142 and 3EG J1735-1500, proposing a microquasar model to explain the EGRET data in consistency with the observations at lower energies (from radio frequencies to soft gamma-rays) within the EGRET error box.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants" math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a nonnumerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adjusting behavior following the detection of inappropriate actions allows flexible adaptation to task demands and environmental contingencies during goal-directed behaviors. Post-error behavioral adjustments typically consist in adopting more cautious response mode, which manifests as a slowing down of response speed. Although converging evidence involves the dorsolateral prefrontal cortex (DLPFC) in post-error behavioral adjustment, whether and when the left or right DLPFC is critical for post-error slowing (PES), as well as the underlying brain mechanisms, remain highly debated. To resolve these issues, we used single-pulse transcranial magnetic stimulation in healthy human adults to disrupt the left or right DLPFC selectively at various delays within the 30-180ms interval following false alarms commission, while participants preformed a standard visual Go/NoGo task. PES significantly increased after TMS disruption of the right, but not the left DLPFC at 150ms post-FA response. We discuss these results in terms of an involvement of the right DLPFC in reducing the detrimental effects of error detection on subsequent behavioral performance, as opposed to implementing adaptative error-induced slowing down of response speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los análisis de Fourier permiten caracterizar el contorno del diente y obtener una serie de parámetros para un posterior análisis multivariante. Sin embargo, la gran complejidad que presentan algunas formas obliga a determinar el error de medición intrínseco que se produce. El objetivo de este trabajo es aplicar y validar los análisis de Fourier en el estudio de la forma dental del segundo molar inferior (M2) de cuatro especies de primates Hominoidea para explorar la variabilidad morfométrica interespecífica, así como determinar el error de medición a un nivel intra e interobservador. El contorno de la superficie oclusal del diente fue definido digitalmente y con las funciones derivadas del análisis de Fourier se realizaron Análisis Discriminantes y Test de Mantel (correlaciones de Pearson) para determinar las diferencias de forma a partir de las mediciones tomadas. Los resultados indican que el análisis de Fourier muestra la variabilidad de forma en dientes molares en especies de primates Hominoidea. Adicionalmente, los altos niveles de correlación a nivel intra (r>0,9) como interobservador (r>0,7) sugieren que la descripción morfométrica del diente a partir de métodos de Fourier realizados por diferentes observadores puede ser agrupada para posteriores análisis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using event-related brain potentials, the time course of error detection and correction was studied in healthy human subjects. A feedforward model of error correction was used to predict the timing properties of the error and corrective movements. Analysis of the multichannel recordings focused on (1) the error-related negativity (ERN) seen immediately after errors in response- and stimulus-locked averages and (2) on the lateralized readiness potential (LRP) reflecting motor preparation. Comparison of the onset and time course of the ERN and LRP components showed that the signs of corrective activity preceded the ERN. Thus, error correction was implemented before or at least in parallel with the appearance of the ERN component. Also, the amplitude of the ERN component was increased for errors, followed by fast corrective movements. The results are compatible with recent views considering the ERN component as the output of an evaluative system engaged in monitoring motor conflict.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decades, calibration techniques have been widely used to improve the accuracy of robots and machine tools since they only involve software modification instead of changing the design and manufacture of the hardware. Traditionally, there are four steps are required for a calibration, i.e. error modeling, measurement, parameter identification and compensation. The objective of this thesis is to propose a method for the kinematics analysis and error modeling of a newly developed hybrid redundant robot IWR (Intersector Welding Robot), which possesses ten degrees of freedom (DOF) where 6-DOF in parallel and additional 4-DOF in serial. In this article, the problem of kinematics modeling and error modeling of the proposed IWR robot are discussed. Based on the vector arithmetic method, the kinematics model and the sensitivity model of the end-effector subject to the structure parameters is derived and analyzed. The relations between the pose (position and orientation) accuracy and manufacturing tolerances, actuation errors, and connection errors are formulated. Computer simulation is performed to examine the validity and effectiveness of the proposed method.