953 resultados para pelvic floor muscle dysfunction
Resumo:
CONTEXT Aims of bladder preservation in muscle-invasive bladder cancer (MIBC) are to offer a quality-of-life advantage and avoid potential morbidity or mortality of radical cystectomy (RC) without compromising oncologic outcomes. Because of the lack of a completed randomised controlled trial, oncologic equivalence of bladder preservation modality treatments compared with RC remains unknown. OBJECTIVE This systematic review sought to assess the modern bladder-preservation treatment modalities, focusing on trimodal therapy (TMT) in MIBC. EVIDENCE ACQUISITION A systematic literature search in the PubMed and Cochrane databases was performed from 1980 to July 2013. EVIDENCE SYNTHESIS Optimal bladder-preservation treatment includes a safe transurethral resection of the bladder tumour as complete as possible followed by radiation therapy (RT) with concurrent radiosensitising chemotherapy. A standard radiation schedule includes external-beam RT to the bladder and limited pelvic lymph nodes to an initial dose of 40Gy, with a boost to the whole bladder to 54Gy and a further tumour boost to a total dose of 64-65Gy. Radiosensitising chemotherapy with phase 3 trial evidence in support exists for cisplatin and mitomycin C plus 5-fluorouracil. A cystoscopic assessment with systematic rebiopsy should be performed at TMT completion or early after TMT induction. Thus, nonresponders are identified early to promptly offer salvage RC. The 5-yr cancer-specific survival and overall survival rates range from 50% to 82% and from 36% to 74%, respectively, with salvage cystectomy rates of 25-30%. There are no definitive data to support the benefit of using of neoadjuvant or adjuvant chemotherapy. Critical to good outcomes is proper patient selection. The best cancers eligible for bladder preservation are those with low-volume T2 disease without hydronephrosis or extensive carcinoma in situ. CONCLUSIONS A growing body of accumulated data suggests that bladder preservation with TMT leads to acceptable outcomes and therefore may be considered a reasonable treatment option in well-selected patients. PATIENT SUMMARY Treatment based on a combination of resection, chemotherapy, and radiotherapy as bladder-sparing strategies may be considered as a reasonable treatment option in properly selected patients.
Resumo:
Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.
Resumo:
BACKGROUND Complex pelvic traumas, i.e., pelvic fractures accompanied by pelvic soft tissue injuries, still have an unacceptably high mortality rate of about 18 %. PATIENTS AND METHODS We retrospectively evaluated an intersection set of data from the TraumaRegister DGU® and the German Pelvic Injury Register from 2004-2009. Patients with complex and noncomplex pelvic traumas were compared regarding their vital parameters, emergency management, stay in the ICU, and outcome. RESULTS From a total of 344 patients with pelvic injuries, 21 % of patients had a complex and 79 % a noncomplex trauma. Complex traumas were significantly less likely to survive (16.7 % vs. 5.9 %). Whereas vital parameters and emergency treatment in the preclinical setting did not differ substantially, patients with complex traumas were more often in shock and showed acute traumatic coagulopathy on hospital arrival, which resulted in more fluid volumes and transfusions when compared to patients with noncomplex traumas. Furthermore, patients with complex traumas had more complications and longer ICU stays. CONCLUSION Prevention of exsanguination and complications like multiple organ dysfunction syndrome still pose a major challenge in the management of complex pelvic traumas.
Resumo:
INTRODUCTION Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. METHODS Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1-100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. RESULTS In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). CONCLUSION LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner.
Resumo:
INTRODUCTION Muscle invasive bladder cancer is an unforgiving disease, and if untreated, it leads to death within 2 years of the diagnosis in >85 % of the patients. Long-term oncologic efficacy remains the ultimate standard that all procedures have to be measured by. In the past decades, open radical cystectomy (RC), extended pelvic lymph node dissection (PLND), and urinary diversion have been established as the gold standard. In the last few years, however, growing attention has been set on robotic-assisted radical cystectomy (RARC). RESULTS Even in the very long term, open RC has good oncological results and if an ileal neobladder is performed excellent functional results. Follow-up of patients after open RC exceeds more than a decade which is unsurpassed by any other technique. Its outcomes have been proven to be durable and cost-effective. Least perioperative complications as well as best oncological and functional results can be achieved if open RC and urinary diversion were performed in a high-volume hospital by high-volume surgeons and an experienced team. CONCLUSIONS Despite upcoming new technologies such as RARC, open RC following extended (PLND) remains the gold standard treatment for high-grade muscle invasive bladder cancer.
Resumo:
BACKGROUND Symptoms associated with pes planovalgus or flatfeet occur frequently, even though some people with a flatfoot deformity remain asymptomatic. Pes planovalgus is proposed to be associated with foot/ankle pain and poor function. Concurrently, the multifactorial weakness of the tibialis posterior muscle and its tendon can lead to a flattening of the longitudinal arch of the foot. Those affected can experience functional impairment and pain. Less severe cases at an early stage are eligible for non-surgical treatment and foot orthoses are considered to be the first line approach. Furthermore, strengthening of arch and ankle stabilising muscles are thought to contribute to active compensation of the deformity leading to stress relief of soft tissue structures. There is only limited evidence concerning the numerous therapy approaches, and so far, no data are available showing functional benefits that accompany these interventions. METHODS After clinical diagnosis and clarification of inclusion criteria (e.g., age 40-70, current complaint of foot and ankle pain more than three months, posterior tibial tendon dysfunction stage I & II, longitudinal arch flattening verified by radiography), sixty participants with posterior tibial tendon dysfunction associated complaints will be included in the study and will be randomly assigned to one of three different intervention groups: (i) foot orthoses only (FOO), (ii) foot orthoses and eccentric exercise (FOE), or (iii) sham foot orthoses only (FOS). Participants in the FOO and FOE groups will be allocated individualised foot orthoses, the latter combined with eccentric exercise for ankle stabilisation and strengthening of the tibialis posterior muscle. Participants in the FOS group will be allocated sham foot orthoses only. During the intervention period of 12 weeks, all participants will be encouraged to follow an educational program for dosed foot load management (e.g., to stop activity if they experience increasing pain). Functional impairment will be evaluated pre- and post-intervention by the Foot Function Index. Further outcome measures include the Pain Disability Index, Visual Analogue Scale for pain, SF-12, kinematic data from 3D-movement analysis and neuromuscular activity during level and downstairs walking. Measuring outcomes pre- and post-intervention will allow the calculation of intervention effects by 3×3 Analysis of Variance (ANOVA) with repeated measures. DISCUSSION The purpose of this randomised trial is to evaluate the therapeutic benefit of three different non-surgical treatment regimens in participants with posterior tibial tendon dysfunction and accompanying pes planovalgus. Furthermore, the analysis of changes in gait mechanics and neuromuscular control will contribute to an enhanced understanding of functional changes and eventually optimise conservative management strategies for these patients. TRIAL REGISTRATION ClinicalTrials.gov Protocol Registration System: ClinicalTrials.gov ID NCT01839669.
Resumo:
Obesity and diabetes are metabolic disorders associated with fatty acid availability in excess of the tissues' capacity for fatty acid oxidation. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in skeletal muscle insulin resistance. My dissertation will present work to test the overall hypothesis that "western" and high fat diets differentially affect cardiac and skeletal muscle fatty acid oxidation, the expression of fatty acid responsive genes, and cardiac contractile function. Wistar rats were fed a low fat, "western," or high fat (10%, 45%, or 60% calories from fat, respectively) diet for acute (1 day to 1 week), short (4 to 8 weeks), intermediate (16 to 24 weeks), or long (32 to 48 weeks) term. With high fat diet, cardiac oleate oxidation increased at all time points investigated. In contrast, with western diet cardiac oleate oxidation increased in the acute, short and intermediate term, but not in the long term. Consistent with a maladaptation of fatty acid oxidation, cardiac power (measured ex vivo) decreased with long term western diet only. In contrast to the heart, soleus muscle oleate oxidation increased only in the acute and short term with either western or high fat feeding. Transcript analysis revealed that several fatty acid responsive genes, including pyruvate dehydrogenase kinase 4, uncoupling protein 3, mitochondrial thioesterase 1, and cytosolic thioesterase 1 increased in heart and soleus muscle to a greater extent with high fat diet, versus western diet, feeding. In conclusion, the data implicate inadequate induction of a cassette of fatty acid responsive genes in both the heart and skeletal muscle by western diet resulting in impaired activation of fatty acid oxidation, and the development of cardiac dysfunction. ^
Resumo:
The proinflammatory cytokine IL-18 was investigated for its role in human myocardial function. An ischemia/reperfusion (I/R) model of suprafused human atrial myocardium was used to assess myocardial contractile force. Addition of IL-18 binding protein (IL-18BP), the constitutive inhibitor of IL-18 activity, to the perifusate during and after I/R resulted in improved contractile function after I/R from 35% of control to 76% with IL-18BP. IL-18BP treatment also preserved intracellular tissue creatine kinase levels (by 420%). Steady-state mRNA levels for IL-18 were elevated after I/R, and the concentration of IL-18 in myocardial homogenates was increased (control, 5.8 pg/mg vs. I/R, 26 pg/mg; P < 0.01). Active IL-18 requires cleavage of its precursor form by the IL-1β-converting enzyme (caspase 1); inhibition of caspase 1 also attenuated the depression in contractile force after I/R (from 35% of control to 75.8% in treated atrial muscle; P < 0.01). Because caspase 1 also cleaves the precursor IL-1β, IL-1 receptor blockade was accomplished by using the IL-1 receptor antagonist. IL-1 receptor antagonist added to the perifusate also resulted in a reduction of ischemia-induced contractile dysfunction. These studies demonstrate that endogenous IL-18 and IL-1β play a significant role in I/R-induced human myocardial injury and that inhibition of caspase 1 reduces the processing of endogenous precursors of IL-18 and IL-1β and thereby prevents ischemia-induced myocardial dysfunction.
Resumo:
Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.
Resumo:
Study Design. Cross-sectional study of electromyographic onsets of trunk and hip muscles in subjects with a clinical diagnosis of sacroiliac joint pain and matched control subjects. Objectives. To determine whether muscle activation of the supporting leg was different between control subjects and subjects with sacroiliac joint pain during hip flexion in standing. Background. Activation of the trunk and gluteal muscles stabilize the pelvis for load transference; however, the temporal pattern of muscle activation and the effect of pelvic pain on temporal parameters has not been investigated. Methods. Fourteen men with a clinical diagnosis of sacroiliac joint pain and healthy age-matched control subjects were studied. Surface electromyographic activity was recorded from seven trunk and hip muscles of the supporting leg during hip flexion in standing. Onset of muscle activity relative to initiation of the task was compared between groups and between limbs. Results. The onset of obliquus internus abdominis (OI) and multifidus occurred before initiation of weight transfer in the control subjects. the onset of obliquus internus abdominis, multifidus, and gluteus maximus was delayed on the symptomatic side in subjects with sacroiliac joint pain compared with control subjects, and the onset of biceps femoris electromyographic activity was earlier. IN addition, electromyographic onsets were different between the symptomatic and asymptomatic sides in subjects with sacroiliac joint pain. Conclusions. The delayed onset of obliquus internus abdominis, multifidus, and gluteus maximus electromyographic activity of the supporting leg during hip flexion, in subjects with sacroiliac joint pain. suggests an alteration in the strategy for lumbopelvic stabilization that may disrupt load transference through the pelvis.
Resumo:
We conducted magnetic resonance imaging of the posterior tibial (PT) and flexor digitorum longus (FDL) muscle bellies in 12 patients undergoing surgical treatment for unilateral posterior tibial tendon (PTT) dysfunction. All patients had atrophy of the PT muscle compared to the normal leg (mean 10.7%, p=0.008). In those patients with a complete rupture of PTT there was replacement of the PT muscle by fatty infiltration. Conversely, the FDL muscle showed a compensatory hypertrophy (mean 17.2%, p
Resumo:
Study Design. Cross-sectional study. Objective. This study compared neck muscle activation patterns during and after a repetitive upper limb task between patients with idiopathic neck pain, whiplash-associated disorders, and controls. Summary of Background Data. Previous studies have identified altered motor control of the upper trapezius during functional tasks in patients with neck pain. Whether the cervical flexor muscles demonstrate altered motor control during functional activities is unknown. Methods. Electromyographic activity was recorded from the sternocleidomastoid, anterior scalenes, and upper trapezius muscles. Root mean square electromyographic amplitude was calculated during and on completion of a functional task. Results. A general trend was evident to suggest greatest electromyograph amplitude in the sternocleidomastoid, anterior scalenes, and left upper trapezius muscles for the whiplash-associated disorders group, followed by the idiopathic group, with lowest electromyographic amplitude recorded for the control group. A reverse effect was apparent for the right upper trapezius muscle. The level of perceived disability ( Neck Disability Index score) had a significant effect on the electromyographic amplitude recorded between neck pain patients. Conclusions. Patients with neck pain demonstrated greater activation of accessory neck muscles during a repetitive upper limb task compared to asymptomatic controls. Greater activation of the cervical muscles in patients with neck pain may represent an altered pattern of motor control to compensate for reduced activation of painful muscles. Greater perceived disability among patients with neck pain accounted for the greater electromyographic amplitude of the superficial cervical muscles during performance of the functional task.
Resumo:
Exercise interventions are deemed essential for the effective management of patients with neck pain. However, there has been a lack of consensus on optimal exercise prescription, which has resulted from a paucity of studies to quantify the precise nature of muscle impairment, in people with neck pain. This masterclass will present recent research from our laboratory, which has utilized surface electromyography to investigate cervical flexor muscle impairment in patients with chronic neck pain. This research has identified deficits in the motor control of the deep and superficial cervical flexor muscles in people with chronic neck pain, characterized by a delay in onset of neck muscle contraction associated with movement of the upper limb. In addition, people with neck pain demonstrate an altered pattern of muscle activation, which is characterized by reduced deep cervical flexor muscle activity during a low load cognitive task and increased activity of the superficial cervical flexor muscles during both cognitive tasks and functional activities. The results have demonstrated the complex, multifaceted nature of cervical muscle impairment, which exists in people with a history of neck pain. In turn, this has considerable implications for the rehabilitation of muscle function in people with neck pain disorders. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Despite the evidence of greater fatigability of the cervical flexor muscles in neck pain patients, the effect of unilaterality of neck pain on muscle fatigue has not been investigated. This study compared myoelectric manifestations of sternocleidomastoid (SCM) and anterior scalene (AS) muscle fatigue between the painful and non-painful sides in patients with chronic unilateral neck pain. Myoelectric signals were recorded from the sternal head of SCM and the AS muscles bilaterally during sub-maximal isometric cervical flexion contractions at 25% and 50% of the maximum voluntary contraction (MVC). The time course of the mean power frequency, average rectified value and conduction velocity of the electromyographic signals were calculated to quantify myoelectric manifestations of muscle fatigue. Results revealed greater estimates of the initial value and slope of the mean frequency for both the SCM and AS muscles on the side of the patient's neck pain at 25% and 50% of MVC. These results indicate greater myoelectric manifestations of muscle fatigue of the superficial cervical flexor muscles ipsilateral to the side of pain. This suggests a specificity of the effect of pain on muscle function and hence the need for specificity of therapeutic exercise in the management of neck pain patients. (C) 2003 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.