949 resultados para pattern visual evoked potential
Resumo:
Reports on left-lateralized abnormalities of component P300 of event-related brain potentials (ERP) in schizophrenics typically did not vary task difficulties. We collected 16-channel ERP in 13 chronic, medicated schizophrenics (25±4.9 years) and 13 matched controls in a visual P300 paradigm with targets defined by one or two stimulus dimensions (C1: color; C2: color and tilt); subjects key-pressed to targets. The mean target-ERP map landscapes were assessed numerically by the locations of the positive and negative map-area centroids. The centroids' time-space trajectories were searched for the P300 microstate landscape defined by the positive centroid posterior of the negative centroid. At P300 microstate centre latencies in C1, patients' maps tended to a right shift of the positive centroid (p<0.10); in C2 the anterior centroid was more posterior (p<0.07) and the posterior (positive) centroid more anterior (p<0.03), but without leftright difference. Duration of P300 microstate in C2 was shorter in patients (232 vs 347 ms;p<0.03) and the latency of maximal strength of P300 microstate increased significantly in patients (C1: 459 vs 376 ms; C2: 585 vs 525 ms). In summary only the one-dimensional task C1 supported left-sided abnormalities; the two-dimensional task C2 produced abnormal P300 microstate map landscapes in schizophrenics, but no abnormal lateralization. Thus, information processing involved clearly aberrant neural populations in schizophrenics, different when processing one and two stimulus dimensions. The lack of lateralization in the two-dimensional task supported the view that left-temporal abnormality in schizophrenics is only one of several task-dependent aberrations.
Resumo:
OBJECTIVE Ocular vestibular-evoked myogenic potentials (oVEMPs) represent extraocular muscle activity in response to vestibular stimulation. The authors sought to investigate whether posture-induced increase of the intracranial pressure (ICP) modulated oVEMP frequency tuning, that is, the amplitude ratio between 500-Hz and 1000-Hz stimuli. DESIGN Ten healthy subjects were enrolled in this study. The subjects were positioned in the horizontal plane (0 degree) and in a 30-degree head-downwards position to elevate the ICP. In both positions, oVEMPs were recorded using 500-Hz and 1000-Hz air-conducted tone bursts. RESULTS When tilting the subject from the horizontal plane to the 30-degree head-down position, oVEMP amplitudes in response to 500-Hz tone bursts distinctly decreased (3.40 μV versus 2.06 μV; p < 0.001), whereas amplitudes to 1000 Hz were only slightly diminished (2.74 μV versus 2.48 μV; p = 0.251). Correspondingly, the 500/1000-Hz amplitude ratio significantly decreased when tilting the subjects from 0- to 30-degree inclination (1.59 versus 1.05; p = 0.029). Latencies were not modulated by head-down position. CONCLUSIONS Increasing ICP systematically alters oVEMPs in terms of absolute amplitudes and frequency tuning characteristics. oVEMPs are therefore in principle suited for noninvasive ICP monitoring.
Resumo:
Following striate cortex damage in monkeys and humans there can be residual function mediated by parallel visual pathways. In humans this can sometimes be associated with a “feeling” that something has happened, especially with rapid movement or abrupt onset. For less transient events, discriminative performance may still be well above chance even when the subject reports no conscious awareness of the stimulus. In a previous study we examined parameters that yield good residual visual performance in the “blind” hemifield of a subject with unilateral damage to the primary visual cortex. With appropriate parameters we demonstrated good discriminative performance, both with and without conscious awareness of a visual event. These observations raise the possibility of imaging the brain activity generated in the “aware” and the “unaware” modes, with matched levels of discrimination performance, and hence of revealing patterns of brain activation associated with visual awareness. The intact hemifield also allows a comparison with normal vision. Here we report the results of a functional magnetic resonance imaging study on the same subject carried out under aware and unaware stimulus conditions. The results point to a shift in the pattern of activity from neocortex in the aware mode, to subcortical structures in the unaware mode. In the aware mode prestriate and dorsolateral prefrontal cortices (area 46) are active. In the unaware mode the superior colliculus is active, together with medial and orbital prefrontal cortical sites.
Resumo:
Combined lesions of retinal targets and ascending auditory pathways can induce, in developing animals, permanent retinal projections to auditory thalamic nuclei and to visual thalamic nuclei that normally receive little direct retinal input. Neurons in the auditory cortex of such animals have visual response properties that resemble those of neurons in the primary visual cortex of normal animals. Therefore, we investigated the behavioral function of the surgically induced retino-thalamo-cortical pathways. We showed that both surgically induced pathways can mediate visually guided behaviors whose normal substrate, the pathway from the retina to the primary visual cortex via the primary thalamic visual nucleus, is missing.
Resumo:
To compare neural activity produced by visual events that escape or reach conscious awareness, we used event-related MRI and evoked potentials in a patient who had neglect and extinction after focal right parietal damage, but intact visual fields. This neurological disorder entails a loss of awareness for stimuli in the field contralateral to a brain lesion when stimuli are simultaneously presented on the ipsilateral side, even though early visual areas may be intact, and single contralateral stimuli may still be perceived. Functional MRI and event-related potential study were performed during a task where faces or shapes appeared in the right, left, or both fields. Unilateral stimuli produced normal responses in V1 and extrastriate areas. In bilateral events, left faces that were not perceived still activated right V1 and inferior temporal cortex and evoked nonsignificantly reduced N1 potentials, with preserved face-specific negative potentials at 170 ms. When left faces were perceived, the same stimuli produced greater activity in a distributed network of areas including right V1 and cuneus, bilateral fusiform gyri, and left parietal cortex. Also, effective connectivity between visual, parietal, and frontal areas increased during perception of faces. These results suggest that activity can occur in V1 and ventral temporal cortex without awareness, whereas coupling with dorsal parietal and frontal areas may be critical for such activity to afford conscious perception.
Resumo:
Conceptual frameworks of dryland degradation commonly include ecohydrological feedbacks between landscape spatial organization and resource loss, so that decreasing cover and size of vegetation patches result in higher water and soil losses, which lead to further vegetation loss. However, the impacts of these feedbacks on dryland dynamics in response to external stress have barely been tested. Using a spatially-explicit model, we represented feedbacks between vegetation pattern and landscape resource loss by establishing a negative dependence of plant establishment on the connectivity of runoff-source areas (e.g., bare soils). We assessed the impact of various feedback strengths on the response of dryland ecosystems to changing external conditions. In general, for a given external pressure, these connectivity-mediated feedbacks decrease vegetation cover at equilibrium, which indicates a decrease in ecosystem resistance. Along a gradient of gradual increase of environmental pressure (e.g., aridity), the connectivity-mediated feedbacks decrease the amount of pressure required to cause a critical shift to a degraded state (ecosystem resilience). If environmental conditions improve, these feedbacks increase the pressure release needed to achieve the ecosystem recovery (restoration potential). The impact of these feedbacks on dryland response to external stress is markedly non-linear, which relies on the non-linear negative relationship between bare-soil connectivity and vegetation cover. Modelling studies on dryland vegetation dynamics not accounting for the connectivity-mediated feedbacks studied here may overestimate the resistance, resilience and restoration potential of drylands in response to environmental and human pressures. Our results also suggest that changes in vegetation pattern and associated hydrological connectivity may be more informative early-warning indicators of dryland degradation than changes in vegetation cover.
Resumo:
Our purpose is to report alterations in contrast sensitivity function (CSF) and in the magno, parvo and koniocellular visual pathways by means of a multichannel perimeter in case of an essential tremor (ET). A complete evaluation of the visual function was performed in a 69-year old patient, including the analysis of the chromatic discrimination by the Fansworth–Munsell 100 hue test, the measurement of the CSF by the CSV-1000E test, and the detection of potential alteration patterns in the magno, parvo and koniocellular visual pathways by means of a multichannel perimeter. Visual acuity and intraocular pressure (IOP) were within the ranges of normality in both eyes. No abnormalities were detected in the fundoscopic examination and in the optical coherence tomography (OCT) exam. The results of the color vision examination were also within the ranges of normality. A significant decrease in the achromatic CSFs for right eye (RE) and left eye (LE) was detected for all spatial frequencies. The statistical global values provided by the multichannel perimeter confirms that there were significant absolute sensitivity losses compared to the normal pattern in RE. In the LE, only a statistically significant decrease in sensitivity was detected for the blue-yellow (BY) channel. The pattern standard deviation (PSD) values obtained in our patient indicated that there were significant localized losses compared to the normality pattern in the achromatic channel of the RE and in the red-green (RG) channel of the LE. Some color vision alterations may be present in ET that cannot be detected with conventional color vision tests, such as the FM 100 Hue.
Resumo:
Spatio-temporal maps of the occipital cortex of macaque monkeys were analyzed using optical imaging of intrinsic signals. The images obtained during localized visual stimulation (IS) were compared with the images obtained on presentation of a blank screen (IB). We first investigated spontaneous variations of the intrinsic signals by analyzing the 100 IBs for each of the three cortical areas. Slow periodical activation was observed in alternation over the cortical areas. Cross-correlation analysis indicated that synchronization of spontaneous activation only took place within each cortical area, but not between them. When a small, drifting grating (2degreesX2degrees) was presented on the fovea. a dark spot appeared in the optical image at the cortical representation of this retinal location. It spread bilaterally along the border between V1 and V2, continuing as a number of parallel dark bands covering a large area of the lateral surface of V1. Cross-correlation analysis showed that during visual stimulation the intrinsic signals over all of the three cortical areas were synchronized, with in-phase activation of V1 and V2 and anti-phase activation of V4 and V1/V2. The significance of these extensive synergistic and antagonistic interactions between different cortical areas is discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Human object recognition is considered to be largely invariant to translation across the visual field. However, the origin of this invariance to positional changes has remained elusive, since numerous studies found that the ability to discriminate between visual patterns develops in a largely location-specific manner, with only a limited transfer to novel visual field positions. In order to reconcile these contradicting observations, we traced the acquisition of categories of unfamiliar grey-level patterns within an interleaved learning and testing paradigm that involved either the same or different retinal locations. Our results show that position invariance is an emergent property of category learning. Pattern categories acquired over several hours at a fixed location in either the peripheral or central visual field gradually become accessible at new locations without any position-specific feedback. Furthermore, categories of novel patterns presented in the left hemifield are distinctly faster learnt and better generalized to other locations than those learnt in the right hemifield. Our results suggest that during learning initially position-specific representations of categories based on spatial pattern structure become encoded in a relational, position-invariant format. Such representational shifts may provide a generic mechanism to achieve perceptual invariance in object recognition.
Resumo:
Both the eye and brain generate magnetic fields when stimulated with a variety of visual cues. These magnetic fields can be measured with a magnetometer; a device which uses superconducting technology. The application of this technique to measuring the magnetooculogram, magnetoretinogram and visually evoked fields from the brain is described. So far the main use of this technique has been in pure research. Its potential for diagnosing ocular and neurological diseases is discussed.
Resumo:
We have attempted to establish normative values of components of the magnetic evoked field to flash and pattern reversal stimuli prior to clinical use of the MEG. Full visual field, binocular evoked magnetic fields were recorded from 100 subjects 16 to 86 years of age with a single channel dc Squid (BTI) second-order gradiometer at a point 5-6cm above the inion. The majority of subjects showed a large positive component (out going magnetic field) of mean latency 115 ms (SD range 2.5 -11.8 in different decades of life) to the pattern reversal stimulus. In many subjects, this P100M was preceeded and succeeded by negative deflections (in going field). About 6% of subjects showed an inverted response i.e. a PNP wave. Waveforms to flash were more variable in shape with several positive components; the most consistent having a mean latency of 110ms (SD range 6.4-23.2). Responses to both stimuli were consistent when measured on the same subject on six different occasions (SD range 4.8 to 7.3). The data suggest that norms can be established for evoked magnetic field components, in particular for the pattern reversal P100M, which could be used in the diagnosis of neuro-opthalmological disease.
Resumo:
In an endeavour to provide further insight into the maturation of the human visual system, the contiguous development of the pattern reversal VEP, flash VEP and flash ERG was studied in a group of neurologically normal pre-term infants, born between 28 and 35 weeks gestation. Maturational changes were observed in all the evoked electrophysiological responses recorded, these were mainly characterised by an increase in the complexity of the waveform and a shortening in the latency of the response. Initially the ERG was seen to consist of a broad b-wave only, with the a-wave emerging at an average age of 40 weeks PMA. The a-wave showed only a slight reduction in latency and a modest increase in amplitude as the infant grows older, whereas the changes seen in the ERG b-wave were much more dramatic. Pattern reversal VEPs were successfully recorded for the first time during the pre-term period. Flash VEPs were also recorded for comparison. The neonatal pattern reversal VEP consistently showed a major positive component (P1) of long latency. As the infant grew older, the latency of the P1 component decreased and was found to be negatively correlated with PMA at recording. The appearance of the N1 and N2 components became more frequent as the infant matured. The majority of infants were found to be myopic at birth and refractive error was correlated with PMA, with emmetropisation occurring at about 45 weeks PMA. The pattern reversal VEP in response to 2o checks was apparently unaffected by refractive error.
Resumo:
The locus of origin of the pattern evoked electroretinogram, (PERG), has been the subject of considerable discussion. A novel approach was adopted in this study to further elaborate the nature of the PERG evoked by pattern onset/offset presentation. The PERG was found to be linearly related to stimulus contrast and in particular was linearly related to the temporal contrast of the retinal image, when elicited by patterns of low spatial frequency. At high spatial frequencies the retinal image contrast is significantly reduced because of optical degradation. This is described by the eye's modulation transfer function (MTF). The retinal contrast of square wave grating and chequerboard patterns of increasing spatial frequency were found by filtering their Fourier transforms by the MTF. The filtered pattern harmonics were then resynthesised to constitute a profile of retinal image illuminance from which the temporal and spatial contrast of the image could be calculated. If the PERG is a pure illuminance response it should be spatially insensitive and dependent upon the temporal contrast of stimulation. The calculated loss of temporal contrast for finer patterns was expressed as a space-averaged temporal contrast attentuation factor. This factor, applied to PERGs evoked by low spatial frequency patterns, was used to predict the retinal illuminance response elicited by a finer pattern. The predicted response was subtracted from the recorded signal and residual waveform was proposed to represent specific activity. An additional correction for the attenuation of spatial contrast was applied to the extracted pattern specific response. Pattern specific responses computed for different spatial frequency patterns in this way are the predicted result of iso-contrast pattern stimulation. The pattern specific responses demonstrate a striking bandpass spatial selectivity which peaks at higher spatial frequencies in the more central retina. The variation of spatial sensitivity with eccentricity corresponds closely with estimated ganglion receptive field centre separation and psychophysical data. The variation of retinal structure with eccentricity, in the form of the volumes of the nuclear layers, was compared with the amplitudes of the computed retinal illuminance and pattern specific responses. The retinal illuminance response corresponds more closely to the outer and inner nuclear layers whilst the pattern specific response appears more closely related to the ganglion cell layer. In general the negative response transients correspond to the more proximal retinal layers. This thesis therefore supports the proposed contribution of proximal retinal cell activity to the PERG and describes techniques which may be further elaborated for more detailed studies of retinal receptive field dimensions.