959 resultados para pattern recognition receptors (PRRs)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring the natural environment is increasingly important as habit degradation and climate change reduce theworld’s biodiversity.We have developed software tools and applications to assist ecologists with the collection and analysis of acoustic data at large spatial and temporal scales.One of our key objectives is automated animal call recognition, and our approach has three novel attributes. First, we work with raw environmental audio, contaminated by noise and artefacts and containing calls that vary greatly in volume depending on the animal’s proximity to the microphone. Second, initial experimentation suggested that no single recognizer could dealwith the enormous variety of calls. Therefore, we developed a toolbox of generic recognizers to extract invariant features for each call type. Third, many species are cryptic and offer little data with which to train a recognizer. Many popular machine learning methods require large volumes of training and validation data and considerable time and expertise to prepare. Consequently we adopt bootstrap techniques that can be initiated with little data and refined subsequently. In this paper, we describe our recognition tools and present results for real ecological problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Audio-visualspeechrecognition, or the combination of visual lip-reading with traditional acoustic speechrecognition, has been previously shown to provide a considerable improvement over acoustic-only approaches in noisy environments, such as that present in an automotive cabin. The research presented in this paper will extend upon the established audio-visualspeechrecognition literature to show that further improvements in speechrecognition accuracy can be obtained when multiple frontal or near-frontal views of a speaker's face are available. A series of visualspeechrecognition experiments using a four-stream visual synchronous hidden Markov model (SHMM) are conducted on the four-camera AVICAR automotiveaudio-visualspeech database. We study the relative contribution between the side and central orientated cameras in improving visualspeechrecognition accuracy. Finally combination of the four visual streams with a single audio stream in a five-stream SHMM demonstrates a relative improvement of over 56% in word recognition accuracy when compared to the acoustic-only approach in the noisiest conditions of the AVICAR database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic Call Recognition is vital for environmental monitoring. Patten recognition has been applied in automatic species recognition for years. However, few studies have applied formal syntactic methods to species call structure analysis. This paper introduces a novel method to adopt timed and probabilistic automata in automatic species recognition based upon acoustic components as the primitives. We demonstrate this through one kind of birds in Australia: Eastern Yellow Robin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a classification problem typically we face two challenging issues, the diverse characteristic of negative documents and sometimes a lot of negative documents that are closed to positive documents. Therefore, it is hard for a single classifier to clearly classify incoming documents into classes. This paper proposes a novel gradual problem solving to create a two-stage classifier. The first stage identifies reliable negatives (negative documents with weak positive characteristics). It concentrates on minimizing the number of false negative documents (recall-oriented). We use Rocchio, an existing recall based classifier, for this stage. The second stage is a precision-oriented “fine tuning”, concentrates on minimizing the number of false positive documents by applying pattern (a statistical phrase) mining techniques. In this stage a pattern-based scoring is followed by threshold setting (thresholding). Experiment shows that our statistical phrase based two-stage classifier is promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we explore the effectiveness of patch-based gradient feature extraction methods when applied to appearance-based gait recognition. Extending existing popular feature extraction methods such as HOG and LDP, we propose a novel technique which we term the Histogram of Weighted Local Directions (HWLD). These 3 methods are applied to gait recognition using the GEI feature, with classification performed using SRC. Evaluations on the CASIA and OULP datasets show significant improvements using these patch-based methods over existing implementations, with the proposed method achieving the highest recognition rate for the respective datasets. In addition, the HWLD can easily be extended to 3D, which we demonstrate using the GEV feature on the DGD dataset, observing improvements in performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raven and Song Scope are two automated sound anal-ysis tools based on machine learning technique for en-vironmental monitoring. Many research works have been conducted upon them, however, no or rare explo-ration mentions about the performance and comparison between them. This paper investigates the comparisons from six aspects: theory, software interface, ease of use, detection targets, detection accuracy, and potential application. Through deep exploration one critical gap is identified that there is a lack of approach to detect both syllables and call structures, since Raven only aims to detect syllables while Song Scope targets call structures. Therefore, a Timed Probabilistic Automata (TPA) system is proposed which separates syllables first and clusters them into complex structures after.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Faunal vocalisations are vital indicators for environmental change and faunal vocalisation analysis can provide information for answering ecological questions. Therefore, automated species recognition in environmental recordings has become a critical research area. This thesis presents an automated species recognition approach named Timed and Probabilistic Automata. A small lexicon for describing animal calls is defined, six algorithms for acoustic component detection are developed, and a series of species recognisers are built and evaluated.The presented automated species recognition approach yields significant improvement on the analysis performance over a real world dataset, and may be transferred to commercial software in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel shape recognition algorithm was developed to autonomously classify the Northern Pacific Sea Star (Asterias amurenis) from benthic images that were collected by the Starbug AUV during 6km of transects in the Derwent estuary. Despite the effects of scattering, attenuation, soft focus and motion blur within the underwater images, an optimal joint classification rate of 77.5% and misclassification rate of 13.5% was achieved. The performance of algorithm was largely attributed to its ability to recognise locally deformed sea star shapes that were created during the segmentation of the distorted images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple sequential thinning algorithm for peeling off pixels along contours is described. An adaptive algorithm obtained by incorporating shape adaptivity into this sequential process is also given. The distortions in the skeleton at the right-angle and acute-angle corners are minimized in the adaptive algorithm. The asymmetry of the skeleton, which is a characteristic of sequential algorithm, and is due to the presence of T-corners in some of the even-thickness pattern is eliminated. The performance (in terms of time requirements and shape preservation) is compared with that of a modern thinning algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustics is a rich source of environmental information that can reflect the ecological dynamics. To deal with the escalating acoustic data, a variety of automated classification techniques have been used for acoustic patterns or scene recognition, including urban soundscapes such as streets and restaurants; and natural soundscapes such as raining and thundering. It is common to classify acoustic patterns under the assumption that a single type of soundscapes present in an audio clip. This assumption is reasonable for some carefully selected audios. However, only few experiments have been focused on classifying simultaneous acoustic patterns in long-duration recordings. This paper proposes a binary relevance based multi-label classification approach to recognise simultaneous acoustic patterns in one-minute audio clips. By utilising acoustic indices as global features and multilayer perceptron as a base classifier, we achieve good classification performance on in-the-field data. Compared with single-label classification, multi-label classification approach provides more detailed information about the distributions of various acoustic patterns in long-duration recordings. These results will merit further biodiversity investigations, such as bird species surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a technique for artificial generation of learning and test sample sets suitable for character recognition research. Sample sets of English (Latin), Malayalam, Kannada and Tamil characters are generated easily through their prototype specifications by the endpoint co-ordinates, nature of segments and connectivity.