947 resultados para parasite antigen
Resumo:
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T cell responses for Caf1. We characterized CD4 T cell epitopes of Caf1 in 'humanized'-HLA-DR1 transgenic mice lacking endogenous MHC class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T cell immunity was measured with respect to proliferative and IFNgamma T cell responses and recognition by a panel of T cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased towards a single immunodominant epitope near the C-terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.
Resumo:
Ecological speciation has been the subject of intense research in evolutionary biology but the genetic basis of the actual mechanism driving reproductive isolation has rarely been identified. The extreme polymorphism of the major histocompatibility complex (MHC), probably maintained by parasite-mediated selection, has been proposed as a potential driver of population divergence. We performed an integrative field and experimental study using three-spined stickleback river and lake ecotypes. We characterized their parasite load and variation at MHC class II loci. Fish from lakes and rivers harbor contrasting parasite communities and populations possess different MHC allele pools that could be the result of a combined action of genetic drift and parasite-mediated selection. We show that individual MHC class II diversity varies among populations and is lower in river ecotypes. Our results suggest the action of homogenizing selection within habitat type and diverging selection between habitat types. Finally, reproductive isolation was suggested by experimental evidence: in a flow channel design females preferred assortatively the odor of their sympatric male. This demonstrates the role of olfactory cues in maintaining reproductive isolation between diverging fish ecotypes.
Resumo:
A range of polyclonal antibodies was successfully produced to the coccidiostatic drugs diclazuril and robenidine. Initial attempts to make immunogenic complexes of both drugs were ineffective due to difficulties encountered while trying to couple the compounds to large carrier proteins. Structural mimics, which could act as haptens for each drug, were sought and identified. The compounds identified were more open to chemical manipulation and were conjugated to carrier proteins to produce effective immunogens. The most sensitive antisera produced displayed IC(50)s of 1.5 ng/ml and 13 ng/ml for diclazuril and robenidine respectively. The antibody for diclazuril was shown to be specific, cross-reacting only with clazuril by 15%. The robenidine antibody displayed a low cross-reactivity of 1.2% to the compound used to produce the antibody. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway.
Resumo:
The giant liver fluke, Fascioloides magna, liver parasite of free-living and domestic ruminants of Europe and North America, was analysed in order to determine the origin of European populations and to reveal the biogeography of this originally North American parasite on the European continent. The previously selected variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384 bp) and nicotinamid dehydrogenase subunit I (nad1; 405 bp) were applied as a tool. The phylogenetic trees and haplotype networks were constructed and the level of genetic structuring was evaluated using population genetic tools. In F. magna individuals originating from all European natural foci (Italy, Czech Republic, Danube floodplain forests) and from four of five major North American enzootic areas, 16 cox1 and 18 nad1 haplotypes were determined. The concatenated sequence set produced 22 distinct haplotypes. The European fluke populations were less diverse than those from North America in that they contained proportionately fewer haplotypes (8), while more substantial level of genetic diversity and higher number of haplotypes (15) were recorded in North America. Only one haplotype was shared between the European (Italy) and North American (USA/Oregon and Canada/Alberta) flukes supporting a western North American origin of the Italian F. magna population. Haplotypes found in Italy were distinct from those determined in the remaining European localities what indicates that introduction of F. magna onto the European continent is a result of more than one event. In Czech focus, a south-eastern US origin of giant liver fluke was revealed. Identical haplotypes, common for parasites from Czech Republic and from expanding focus of Danube floodplain forests, implies introduction of F. magna to the Danube region from an already established Czech focus.
Resumo:
Background. The success of transplantation is hampered by rejection of the graft by alloreactive T cells. Donor dendritic cells (DC) have been shown to be required for direct priming of immune responses to antigens from major histocompatibility complex-mismatched grafts. However, for immune responses to major histocompatibility complex-matched, minor histocompatibility (H) antigen mismatched grafts, the magnitude of the T-cell response to directly presented antigens is reduced, and the indirect pathway is more important. Therefore, we aimed to investigate the requirement for donor DC to directly present antigen from minor H antigen mismatched skin and hematopoietic grafts.
Resumo:
The efficacies of putative fasciolicides and vaccines against Fasciola hepatica are frequently monitored in clinical and field trials by determination of fluke egg output in host faeces and by worm counts in the host liver at autopsy. Less often used are parameters based on fluke size and histology, yet these can provide important indications of specific effects on the development of particular germ-line or somatic tissues, especially in relation to the timing and profligacy of egg production. In this study. F. hepatica metacercariae of two distinct isolates, the triclabendazole (TCBZ)-sensitive Cullompton isolate and the TCBZ-resistant Oberon isolate, were administered to rats as single-isolate or mixed-isolate infections. At autopsy 16 weeks later individual adult flukes were counted, measured and the reproductive organs were examined histologically. The degree of development of the testis tubules in each fluke was represented by a numerical score, based on the proportion of the histological section profiles occupied by testis tissue. The level of anti-F. hepatica antibody in the serum of each rat was determined by ELISA. It was found that Cullompton flukes were significantly larger than Oberon flukes, and that significantly more Cullompton metacercariae developed to adults than Oberon metacercariae. The Cullompton flukes showed histological evidence of aspermy and spermatogenic arrest, which was reflected in quantitatively reduced testicular development, as compared with the Oberon isolate. In Cullompton flukes, parthenogenetic egg development is implied. The size of Cullompton and Oberon flukes was significantly related to the number of adult flukes recovered, to the number of metacercariae administered, and to the percentage success of infection. The testis development score in both isolates was significantly related to the number of adult flukes recovered but not to the number of metacercariae administered, or to the percentage success of infection. Fluke size was positively related to testis score for both isolates, and a significant negative relationship was found between percentage success of infection and metacercarial dose. The results are interpreted in terms of differing interactions between various numbers of young flukes and host immunity during invasion of and migration in the hepatic parenchyma, and of fluke intra-specific (possibly pheromonal) stimulatory effects in the final stages of development, within the host bile ducts. No significant relationships were found between host antibody levels and fluke size or testis score. False positive serological reactions were found in some rats that had been infected, but found to harbour no flukes at autopsy. Clearly the act of eliminating the flukes involved generation of an immune response. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background
G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum.
Results
Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification.
Conclusions
Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.
Resumo:
1. A neuropeptide exhibiting pancreatic polypeptide-immunoreactivity (PP-IR) has been isolated and characterised from the parasitic platyhelminth, Diclidophora merlangi.