925 resultados para ovulation synchronization
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
The objective of the current study was to evaluate the effect of GnRH early postpartum on induction of ovulation, uterine health, and fertility in dairy cows. Holstein cows without a corpus luteum (CL) at 17 +/- 3 DIM were assigned randomly to receive i.m. GnRH (n = 245) at 17 +/- 3 and 20 +/- 3 DIM or remain as controls (n = 245). Ovaries were scanned by ultrasonography twice weekly totaling 4 examinations. Ovulation was characterized by the appearance of a CL >= 20 mm at any ultrasound or CL <20 mm in 2 consecutive examinations. Clinical and cytological endometritis were diagnosed at 35 DIM. Compared with control, GnRH increased ovulation up to 3.5 d after the last treatment (78.7 vs. 45.0%) and did not affect the prevalence of clinical endometritis (23.9 vs. 18.6%) or cytological endometritis (30.9 vs. 32.8%). Prevalence of clinical endometritis increased in cows that had calving problems (32.6 vs. 15.9%) and metritis (40.6 vs. 15.8%). Metritis increased prevalence of cytological endometritis (50.7 vs. 23.5%). Treatment with GnRH did not affect pregnancy per artificial insemination at 32 (37.6 vs. 38.6%) or 74 d after artificial insemination (35.0 vs. 31.5%), but reduced pregnancy loss (6.8 vs. 18.1%). No overall effect of GnRH treatment on hazard of pregnancy was observed; however, an interaction between GnRH treatment and ovulation showed that GnRH-treated cows that ovulated had increased hazard of pregnancy by 300 DIM compared with GnRH-treated and control cows that did not ovulate (hazard ratio = 2.0 and 1.3, respectively), but similar to control cows that ovulated (hazard ratio = 1.1). Gonadotropin-releasing hormone early postpartiim induced ovulation without affecting uterine health, but failed to improve pregnancy per artificial insemination or time to pregnancy, although it reduced pregnancy loss.
Resumo:
The objective of this study was to determine the effect of age of the ovulatory follicle on fertility in beef heifers. Ovulation was synchronized with the 5 d CO-Synch + controlled intravaginal drug release (CIDR) program in heifers in Montana (MT; n = 162, Hereford and Angus Crossbred) and Ohio (OH; n = 170, Angus Crossbred). All heifers received estradiol benzoate (EB; 1 mg/500 kg BW, [i.m.]) 6 d after the final GnRH of the synchronization program to induce follicular atresia and emergence of a new follicular wave (NFW) followed by prostaglandin F2 alpha (PGF(2 alpha); 25 mg, i.m.) administration either 5 d (young follicle [YF]; n = 158) or 9 d (mature follicle [MF]; n = 174) after EB. Estrous detection was performed for 5 d after PGF(2 alpha) with AI approximately 12 h after onset of estrus. Ovarian ultrasonography (MT location only) was performed in YF and MF at EB, 5 d after EB, PGF(2 alpha), and AI. Heifers in MT (n = 20) and OH (n = 18) that were not presynchronized or did not initiate a NFW were excluded from further analyses, resulting in 142 and 152 heifers in MT and OH, respectively. Heifers from the MF treatment in MT that initiated a second NFW after EB but before PGF(2 alpha) (MF2; n = 14) were excluded from the primary analysis. In the secondary analysis, the MF2 group was compared to MF and YF treatments in MT. Estrous response was similar (90%; 252/280) between treatments and locations. Proestrus interval (from PGF(2 alpha) to estrus) and age of the ovulatory follicle at AI were similar for MF heifers between locations (54.6 +/- 1.7 h and 8.3 +/- 0.07 h) but were greater (P < 0.01) for YF heifers in OH (78.5 +/- 1.4 h and 5.3 +/- 0.06 h) than MT (67.4 +/- 1.6 h and 4.8 +/- 0.06 h; treatment x location, P < 0.01). However, conception rate did not differ for MF (63.8%; 74/116) and YF (67.0%; 91/136) treatments. In the MT heifers, follicle size and follicle age atAI in the YF treatment (10.4 +/- 0.15 mm and 4.8 +/- 0.06 d, respectively) was less (P < 0.01) than in the MF treatment (11.0 +/- 0.18 mm and 8.3 +/- 0.11 d, respectively), but conception rate to AI did not differ between treatments in MT. In the MF2 group proestrus interval was greater (P < 0.01); hence, diameter of the ovulatory follicle and age were similar to that for the YF treatment. Conception rate to AI did not differ between MF2, MF, and YF (61.5, 63.3, and 64.7%, respectively) in MT. In conclusion, manipulation of age of the nonpersistent ovulatory follicle at spontaneous ovulation did not influence conception rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The majority of beef cow herds in South America are constituted by Bos indicus females, which have particular reproductive features that contribute to reduced reproductive efficiency compared with that of B. taurus cohorts. Hence, several alternatives to enhance reproductive efficiency of B. indicus heifers and cows have been developed to address their inherent reproductive shortcomings. These research-based technologies are being described in detail within this chapter and have already made an impact on South American B. indicus-based production systems. These include the following: (a) hormonal protocols to induce puberty in nulliparous heifers or estrous cyclicity in postpartum cows to maximize their reproductive performance during the subsequent breeding season, (b) hormonal protocols to synchronize estrus and/or ovulation in B. indicus females to exploit their reproductive responses to artificial insemination, and (c) genetic and environmental factors that influence reproductive success in beef herds, including reproductive diseases and excitable temperament of B. indicus females, that have been investigated to support/promote the development of appropriate mitigation technologies.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper addresses the problem of finite-time synchronization of tunnel diode based chaotic oscillators. After a brief investigation of its chaotic dynamics, we propose an active adaptive feedback coupling which accomplishes the synchronization of tunnel-diode-based chaotic systems with and without the presence of delay(s), basing ourselves on Lyapunov and on Krasovskii-Lyapunov stability theories. This feedback coupling could be applied to many other chaotic systems. A finite horizon can be arbitrarily established by ensuring that chaos synchronization is achieved at a pre-established time. An advantage of the proposed feedback coupling is that it is simple and easy to implement. Both mathematical investigations and numerical simulations followed by PSPICE experiment are presented to show the feasibility of the proposed method.
Resumo:
The aim of the present study was to evaluate the effects of type of norgestomet auricular implant (new - N or previously used during 5 days - U), season of the year (summer - S and winter - W), and parity (12 heifers - H and 23 cows - C) on synchronization of follicular wave emergence in buffaloes. For this purpose, 35 buffaloes were examined daily by ultrasonography until follicular wave emergence was detected. Data were analysed by ANOVA, using PROC GLIMMIX. No interactions were observed in none variables. Time of follicular wave emergence and number of follicles at emergence were not affected by type of implant or season of the year. Parity also did not influence the number of follicles at emergence. However, follicular wave emergence occurred later in heifers than in cows. In conclusion, the previous use of a norgestomet auricular implant independent of the season of the year does not affect the time or the number of follicles at follicular wave emergence in buffaloes. Nevertheless, although heifers and cows had a similar number of follicles at emergence, the time of follicular wave emergence occurs earlier in cows than in heifers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Modern protocols to synchronize ovulations for timed artificial insemination and timed embryo transfer that include manipulations in the proestrus period (i.e., between luteolysis and estrus) affect fertility in cattle. Specifically, stimulating pre-ovulatory follicle growth and exposure to estrogens after CL regression increase the proportion of cows pregnant and decrease late embryo mortality. Such effects may be due to both preovulatory actions of estrogens and post-ovulatory actions of progesterone, as concentrations of the later hormone may be changed in response to manipulations conducted during proestrus. In the first portion of this paper we describe strategies used recently to manipulate the proestrus period in protocols for synchronization of ovulation, and to present evidence of their effects on fertility. Manipulations of timing and prominence of sex steroids during the proestrus and early diestrus that affect fertility may act on targets such as the endometrium. This tissue expresses receptors for both estrogens and progesterone and these hormones change endometrial function to support conceptus growth and pregnancy maintenance. However, specific cellular and molecular mechanisms through which fertility is affected via manipulations of the proestrus are poorly understood. In the second portion of this paper we describe a well-defined animal model to study changes in endometrial function induced by manipulations conducted during the proestrus. Such manipulations induced endometrial changes on sex steroid receptors expression, cell proliferation, oxidative metabolism and eicosanoid synthesis in the uterus, but not on glucose transport to uterine lumen. In summary, evidence is accumulating to support a positive role of increasing duration and estrogen availability during the proestrus on fertility to synchronization protocols. Such positive effects may be through changes in endometrial function to stimulate conceptus growth and survival.
Resumo:
Sao Paulo State Research Foundation-FAPESP
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Different cell cycle synchronization methods were used to increase the mitotic index and accuracy of sex determination in murine and bovine embryos. For sexing purposes, colchicine treatment for 2, 4, 6 and 8 h and the FdU-thymidine-colchicine combination were tested in murine embryos. The best results were obtained with colchicine treatment for 8 h (96.88% accuracy) and with FdU-thymidine-colchicine (97.22% accuracy). Mitotic indexes differed significantly between the 2 treatments (21.71% for colchicine and 32.95% for FdU-thymidine-colchicine). For sex identification of murine and bovine demi-embryos, both treatments were demonstrated to be equally effective (nearly 90%). The mitotic index for the FdU-treated murine demi-embryos (19.04%) was higher than the one obtained for the 8-h colchicine treatment (15.62%).
Resumo:
The presence of anovulatory haemorrhagic follicles during the oestrous cycle of mares causes financial impacts, slowing conception and increasing the number of services per pregnancy. Non-steroidal anti-inflammatory drugs (NSAIDs) such as meloxicam and phenylbutazone are used in the treatment of several disorders in mares, and these drugs can impair the formation of prostaglandins (PGs) and consequently interfere with reproductive activity. This study aimed to evaluate the effects of treatment with NSAIDs on the development of pre-ovulatory follicles in mares. In total, 11 mares were studied over three consecutive oestrous cycles, and gynaecological and ultrasound examinations were performed every 12 h. When 32-mm-diameter follicles were detected, 1 mg of deslorelin was administered to induce ovulation. The first cycle was used as a control, and the mares received only a dose of deslorelin. In the subsequent cycles, in addition to receiving the same dose of deslorelin, each mare was treated with NSAIDs. In the second cycle, 4.4 mg/kg of phenylbutazone was administered, and in the third cycle, 0.6 mg/kg of meloxicam was administered once a day until ovulation or the beginning of follicular haemorrhage. All of the mares ovulated between 36 and 48 h after the induction in the control cycle. In the meloxicam cycle, 10 mares (92%) did not ovulate, while in the phenylbutazone cycle, nine mares (83%) did not ovulate. In both treatments, intrafollicular hyperechoic spots indicative of haemorrhagic follicles were observed on ultrasound. Thus, our results suggested that treatment with meloxicam and phenylbutazone at therapeutic doses induced intrafollicular haemorrhage and luteinization of anovulatory follicles.