961 resultados para organic matter quality and quantity
Resumo:
Three lower Barremian to middle/upper Cenomanian samples from DSDP Hole 549 and three lower Cenomanian to lower Maestrichtian samples from DSDP Hole 550B were investigated by organic geochemical and organic petrographic methods. The samples came from wells drilled in the area of the Goban Spur in the northeastern Atlantic; they represent gray to greenish gray carbonaceous mud or siltstones from the deeper parts of the Cretaceous sequences penetrated and light-colored chalks from the shallower ones. The total amount of organic carbon is below 1% in all samples; it is especially low in the Cenomanian to Maestrichtian chalks. Terrigenous organic matter predominates; only the Barremian sample shows a moderate number of marine phytoclasts. As indicated by several parameters, the maturity of the organic matter is low, corresponding to about 0.4% vitrinite reflectance.
Resumo:
Detailed petrographical and bulk geochemical investigations of organic matter (OM) have been performed on sediments deposited below or close to upwelling areas offshore Peru (ODP-Leg 112; Sites 679, 681, 688) and Oman (ODP-Leg 117; Sites 720, 723, 724) in order to obtain a quantitative understanding of its accumulation and degradation. Microscopical as well as nanoscopical investigations reveal that the OM in sediments affected by upwelling mechanisms mainly (up to 98%) consists of unstructured (amorphous) organic aggregates without any apparent biological structures. In sediments which are not or to a lesser extent affected by upwelling (Site 720) terrestrial OM predominates. Organic carbon (TOC) contents are highly variable and range between 9.8% in sediments deposited below upwelling cells and 0.2% in sediments outside the upwelling zone. The TOC/sulphur ratios of the sediments scatter widely. The samples from the deep-water locations (Sites 688 and 720), show C/S-ratios of "normal" marine sediments, whereas at the other locations no correlation or even a negative correlation between sulphur and TOC concentration exists. In most of the upwelling-influenced sediments OM contains a significant amount of sulphur. The incorporation of sulphur into the OM followed microbial sulphate reduction and occurred in the upper meters of the sedimentary column. Below, OM is still present in vast amounts and relatively hydrogen-rich, but is nevertheless non-metabolizable and becomes the limiting factor for bacterial sulphate reduction. According to mass balance calculations 90-99% of the OM produced in the photic zone was remineralized and 1-3% was consumed by microbial sulphate reduction. The aerobic and anaerobic processes have greatly affected degradation and conservation of OM.
Resumo:
Marine-derived amorphous organic matter dominates hemipelagic and trench sediments in and around the Middle America Trench. These sediments contain, on the average, 1% to 2% total organic carbon (TOC), with a maximum of 4.8%. Their organic facies and richness reflect (1) the small land area of Guatemala, which contributes small amounts of higher land plant remains, and (2) high levels of marine productivity and regionally low levels of dissolved oxygen, which encourage deposition and preservation of marine organic remains. These sediments have good potential for oil but are now immature. For this reason, gaseous hydrocarbons like the ethane identified in the deep parts of the section, as at Sites 496 and 497, are probably migrating from a mature section at depth. The pelagic sediments of the downgoing Cocos Plate are lean in organic carbon and have no petroleum potential
Resumo:
Dispersed organic matter of plant origin from three sites of the Middle America Trench transect was investigated by coal petrographic methods. Samples from the slope region are rich in lipoid and inert substances. Humic matter is predominant in the trench sediments. Reflectance measurements show that the rank of the organic matter is peat, independent of the tectonic position and age of the samples in question. A slow increase of coalification with depth is observed.
Resumo:
Qualitative and quantitative evaluation of the finely dispersed fraction of particulate organic matter in sea water is given. It is demonstrated that in the euphotic zone of high productivity waters this fraction constitutes 86%, in waters with low productivity 61%, and in deep waters (>200 m) 53% of the organic carbon in particulate matter. Formation of the finely dispersed fraction and its role in distribution of energy in the detrital food chain of the ecosystem are discussed.
Resumo:
Lipid components of hydrothermal deposits from the unusual field at 14°45'N MAR and from the typical field at 29°N MAR were studied. For the first time mixed nature of organic matter (OM) from hydrothermal sulfide deposits was established with use of biochemical, gas chromatographic, and molecular methods of studies. In composition of OM lipids of phytoplankton, those of chemosynthesis bacteria and non-biogenic synthesis lipids were determined. Specific conditions of localization of sulfide deposits originated from ''black smokers'' (reducing conditions, absence of free oxygen, presence of reduced sulfur preventing OM from decomposition) let biogenic material, including bacterial one, be preserved in sulfide deposits. The hydrothermal system at 14°45'N MAR is characterized by geological, geochemical and thermodynamic conditions allowing abiogenic synthesis of methane and petroleum hydrocarbons. For sulfide deposits at 29°N and other active hydrothermal fields known at MAR, abiogenic synthesis of hydrocarbons occurs in lower scales.
Resumo:
The isotopic characteristics of CH4 (d13C values range from -101.3 per mil to -61.1 per mil PDB, and dD values range from -256 per mil to -136 per mil SMOW) collected during Ocean Drilling Program (ODP) Leg 164 indicate that the CH4 was produced by microbial CO2 reduction and that there is not a significant contribution of thermogenic CH4 to the sampled sediment gas from the Blake Ridge. The isotopic values of CO2 (d13C range -20.6 per mil to +1.24 per mil PDB) and dissolved inorganic carbon (DIC; d13C range -37.7 per mil to +10.8 per mil PDB) have parallel profiles with depth, but with an offset of 12.5 per mil. Distinct downhole variations in the carbon isotopic composition of CH4 and CO2 cannot be explained by closed-system fractionation where the CO2 is solely derived from the locally available sedimentary organic matter (d13C -2.0 per mil ± 1.4 per mil PDB) and the CH4 is derived from CO2 reduction. The observed isotopic profiles reflect the combined effects of upwards gas migration and decreased microbial activity with depth.
Resumo:
This research has been carried out in the Nha Trang Bay (Southern Vietnam, South China Sea) at a section from the estuary of the Cai River to the marine part of the bay, as well as in the area of coral reefs. River- and sea waters, suspended matter, and bottom sediments are studies. Data on dissolved organic carbon and total nitrogen in water are obtained. Organic carbon concentration is estimated in suspended matter; organic carbon and molecular and group compositions of n-alkanes are determined in bottom sediments. Molecular and group compositions of n-alkanes in bottom sediments of the landfill made it possible to identify three types of organic matter (OM): marine, mixed, and mainly of terrigenous origin. All these types of OM are closely related to specificity of sedimentation and hydrodynamics of waters in this area.