994 resultados para nuclear physics, QCD, sea quark, parity violation, lead fluoride


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We suggest that pion and kaon interlerometry are complementary probes that help differentiate hadronic resonance gas from plasma dynamical models. We also discuss how interferometry could be used to test the presence of resonances at AGS energies. Finally, we study the A dependence of interferometry in the resonance model at 200 A GeV. © 1991.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive simple and physically transparent expressions for the contribution of the strong interaction to one-nucleon-removal processes in peripheral relativistic heavy-ion collisions. The coherent contribution, i.e., the excitation of a giant dipole resonance via meson exchange, is shown to be negligible as well as the interference between Coulomb and nuclear excitation. The incoherent nucleon-knockout contribution is also derived suggesting the nature of the nuclear interaction in this class of processes. We also justify the simple formulae used to fit the data of the E814 Collaboration. © 1995 Elseier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The negative-dimensional integration method (NDIM) seems to be a very promising technique for evaluating massless and/or massive Feynman diagrams. It is unique in the sense that the method gives solutions in different regions of external momenta simultaneously. Moreover, it is a technique whereby the difficulties associated with performing parametric integrals in the standard approach are transferred to a simpler solving of a system of linear algebraic equations, thanks to the polynomial character of the relevant integrands. We employ this method to evaluate a scalar integral for a massless two-loop three-point vertex with all the external legs off-shell, and consider several special cases for it, yielding results, even for distinct simpler diagrams. We also consider the possibility of NDIM in non-covariant gauges such as the light-cone gauge and do some illustrative calculations, showing that for one-degree violation of covariance (i.e. one external, gauge-breaking, light-like vector n μ) the ensuing results are concordant with the ones obtained via either the usual dimensional regularization technique, or the use of the principal value prescription for the gauge-dependent pole, while for two-degree violation of covariance - i.e. two external, light-like vectors n μ, the gauge-breaking one, and (its dual) n * μ - the ensuing results are concordant with the ones obtained via causal constraints or the use of the so-called generalized Mandelstam-Leibbrandt prescription. © 1999 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a relativistic quark model for pion structure, which incorporates the nontrivial structure of the vacuum of quantum chromodynamics as modelled by instantons. Pions are bound states of quarks and the strong quark-pion vertex is determined from an instanton induced effective Lagrangian. The interaction of the constituents of the pion with the external electromagnetic field is introduced in gauge invariant form. The parameters of the model, i.e., effective instanton radius and constituent quark mass, are obtained from the vacuum expectation values of the lowest dimensional quark and gluon operators and the low-energy observables of the pion. We apply the formalism to the calculation of the pion form factor by means of the isovector nonforward parton distributions and find agreement with the experimental data. © 2000 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The short-range properties of the kaon-nucleon (KN) interaction are studied within the meson-exchange model of the Jülich group. Specifically, dynamical explanations for the phenomenological short-range repulsion, required in this model for achieving agreement with the empirical KN data, are explored. Evidence is found that contributions from the exchange of a heavy scalar-isovector meson [a0(980)] as well as from genuine quark-gluon exchange processes are needed. Taking both mechanisms into account, a satisfactory description of the KN phase shifts can be obtained without resorting to phenomenological pieces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical limiting behavior and nonlinear optical properties of antimony and lead oxyhalide glasses were discussed. The large nonlinear absorption coefficients which range from 11 to 20 cm/GW was determined using standard Z-scan technique. The photodarkening in the samples were observed which suggested that they can also be useful for inscribing Bragg gratings using green lasers of moderate power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a search for direct CP violation in B±→J/ ψK±(π±) decays. The event sample is selected from 2.8fb-1 of pp̄ collisions recorded by D0 experiment in run II of the Fermilab Tevatron Collider. The charge asymmetry ACP(B+→J/ψK+)=+0.0075±0. 0061(stat)±0.0030(syst) is obtained using a sample of approximately 40000 B±→J/ψK± decays. The achieved precision is of the same level as the expected deviation predicted by some extensions of the standard model. We also measured the charge asymmetry ACP(B+→J/ψπ+)=-0. 09±0.08(stat)±0.03(syst). © 2008 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the node structure of the radial functions which are solutions of the Dirac equation with scalar S and vector V confining central potentials, in the conditions of exact spin or pseudospin symmetry, i.e., when one has V=±S+C, where C is a constant. We show that the node structure for exact spin symmetry is the same as the one for central potentials which go to zero at infinity but for exact pseudospin symmetry the structure is reversed. We obtain the important result that it is possible to have positive energy bound solutions in exact pseudospin symmetry conditions for confining potentials of any shape, including naturally those used in hadron physics, from nuclear to quark models. Since this does not occur for potentials going to zero at large distances, which are used in nuclear relativistic mean-field potentials or in the atomic nucleus, this shows the decisive importance of the asymptotic behavior of the scalar and vector central potentials on the onset of pseudospin symmetry and on the node structure of the radial functions. Finally, we show that these results are still valid for negative energy bound solutions for antifermions. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since its discovery, radioactivity has brought numerous benefits to human societies. It has many applications in medicine, serving as a tool for non-invasive methods for diagnosis and therapies against diseases such as cancer. It also applies to technologies for energy in nuclear power plants with relatively low impacts on terms of perfect security. All applications, however, have risks, requiring maximum caution to drive processes and operations involving radioactive elements because, once released into the environment, they have extremely harmful effects on organisms affected. This paper presents fundamental concepts and principles of nuclear physics in order to understand the effects of radioactive elements released into the environment, culminating on the issue of radioactive contamination. Literature review allowed us to understand the radioactive contamination problem on living beings. Three major nuclear accidents have happened in the last thirty years, two of them in consecutive years. The nuclear accident at Chernobyl, Ukraine, in 1986, polluted large areas, condemning hundreds of thousands of people to live with consequences of the accident and effects of radiation, killing thousands of people throughout the years. In 1987, a major radiological accident occurred in Goiania (GO) when a source of radioactive cesium was violated, leading to the death of those who had direct or indirect contact with cesium. The most recent accident, in March, 2011, was located at the nuclear power plant in Fukushima Prefecture, Japan, after an earthquake and tsunami hit the region. There is no extensive and accurate knowledge about the consequences of the contamination entailed in that accident, although it is possible to verify signals on a global scale. An analysis of reports of contamination of large areas generated by nuclear plants with release of hazardous wastes suggests it is necessary to rethink the energy matrix of the various countries...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this work is to study the process of interaction of protons with matter through Monte Carlo simulation. For this purpose, it was employed the SRIM program (Stopping and Range of Ions in Matter ) and MCNPX (Monte Carlo N-Particle eXtended) v2.50. This work is going to support the development of a tomography system with protons. It was studied the interaction of proton with the follow materials: Polimethyl Mehacralate (PMMA), MS20 Tissue Substitute and water. This work employed energies in range of 50 MeV and 250 MeV, that is the range of clinical interest. The energy loss of proton after cross a material layer, the decreasing of its intensity, the angular and lateral de ection of incident beam, including and excluding nuclear interactions. This work is related with Medical Physics and Material Physics, like interaction of radiation with matter, particle transport phenomena, and the experimental methods in Nuclear Physics like simulation and computational by Monte Carlo method

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidimensional and one-dimensional quantum-statistical (Bose-Einstein) correlations are measured in proton proton collisions at 0.9, 2.76 and 7 TeV, in proton lead collisions at 5.02 TeV/nucleon pair and peripheral lead lead collisions at 2.76 TeV/nucleon pair center-of-mass energy with the CMS detector at the LHC. The correlation functions are extracted in terms of different components of the relative momentum of the pair, in order to investigate the extension of the emission source in different directions. The results are presented for different intervals of transverse pair momentum, k(T), and charged particle multiplicity of the collision, N-tracks, as well as for their integrated values. Besides inclusive charged particles, charged pions and kaons, identified via their energy loss in the silicon tracker detector, can also be correlated. The extracted source radii increase with increasing multiplicity, and decrease with increasing k(T). The results open the possibility to study scaling and factorization properties of these radii as a function of multiplicity, k(T), colliding system size and center-of-mass energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear medium effects in the neutrino cooling of neutron stars through the reaction channel γγ→π0 →ν Rν̄L(νLν̄R) are incorporated. Throughout the paper we discuss different possibilities of right-handed neutrinos, massive left-handed neutrinos, and standard massless left-handed neutrinos (reaction is then allowed only with medium modified vertices). It is demonstrated that multiparticle effects suppress the rate of this reaction channel in the dense hadron matter by 6-7 orders of magnitude that does not allow to decrease existing experimental upper limit on the corresponding π0νν̄ coupling. Other possibilities of the manifestation of the given reaction channel in different physical situations, e.g., in the quark color superconducting cores of the most massive neutron stars, are also discussed. We demonstrate that in the color-flavor-locked superconducting phase for temperatures T≲ 0.1-10 MeV (depending on the effective pion mass and the decay width) the process is feasibly the most efficient neutrino cooling process, although the absolute value of the reaction rate is rather small.