975 resultados para non-hyperbolic solution
Resumo:
The three-dimensional three-body problem with non-equal masses interacting through pairwise harmonic forces of non-equal strengths is analysed. It is shown that the Jacobi coordinates per se do not decouple this problem but lead to the problem of two coupled three-dimensional harmonic oscillators which becomes exactly soluble through the use of an additional coordinate set.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Resumo:
Undoped and indium-doped Zinc oxide (ZnO) solid films were deposited by the pyrosol process at 450°C on glass substrates from solutions where In/Zn ratio was 2, 5, and 10 at.%. Electrical measurements performed at room temperature show that the addition of indium changes the resistance of the films. The resistivities of doped films are less than non-doped ZnO films by one to two orders of magnitude depending on the dopant concentration in the solution. Preferential orientation of the films with the c-axis perpendicular to the substrate was detected by X-ray diffraction and polarized extended X-ray absorption fine structures measurements at the Zn K edge. This orientation depends on the indium concentration in the starting solution. The most textured films were obtained for solutions where In/Zn ratio was 2 and 5 at.%. When In/Zn = 10 at.%, the films had a nearly random orientation of crystallites. Evidence of the incorporation of indium in the ZnO lattice was obtained from extended X-ray absorption fine structures at the In and Zn K edges. The structural analysis of the least resistive film (Zn/In = 5 at.%) shows that In substitutes Zn in the wurtzite structure. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Ablation is a thermal protection process with several applications in engineering, mainly in the field of airspace industry. The use of conventional materials must be quite restricted, because they would suffer catastrophic flaws due to thermal degradation of their structures. However, the same materials can be quite suitable once being protected by well-known ablative materials. The process that involves the ablative phenomena is complex, could involve the whole or partial loss of material that is sacrificed for absorption of energy. The analysis of the ablative process in a blunt body with revolution geometry will be made on the stagnation point area that can be simplified as a one-dimensional plane plate problem, hi this work the Generalized Integral Transform Technique (GITT) is employed for the solution of the non-linear system of coupled partial differential equations that model the phenomena. The solution of the problem is obtained by transforming the non-linear partial differential equation system to a system of coupled first order ordinary differential equations and then solving it by using well-established numerical routines. The results of interest such as the temperature field, the depth and the rate of removal of the ablative material are presented and compared with those ones available in the open literature.
Resumo:
The power flow problem, in transmission networks, has been well solved, for most cases, using Newton-Raphson method (NR) and its decoupled versions. Generally speaking, the solution of a non-linear system of equations refers to two methods: NR and Successive Substitution. The proposal of this paper is to evaluate the potential of the Substitution-Newton-Raphson Method (SNR), which combines both methods, on the solution of the power flow problem. Simulations were performed using a two-bus test network in order to observe the characteristics of these methods. It was verified that the NR is faster than SNR, in terms of convergence, considering non-stressed scenarios. For those cases where the power flow in the network is closed to the limits (stressed system), the SNR converges faster. This paper presents the power flow formulation of the SNR and describes its potential for its application in special cases such as stressed scenarios. © 2006 IEEE.
Resumo:
The dynamical system investigated in this work is a nonlinear flexible beam-like structure in slewing motion. Non-dimensional and perturbed governing equations of motion are presented. The analytical solution for the linear part of these perturbed equations for ideal and for non-ideal cases are obtained. This solution is necessary for the investigation of the complete weak nonlinear problem where all nonlinearities are small perturbations around a linear known solution. This investigation shall help the analyst in the modelling of dynamical systems with structure- actuator interactions.
Resumo:
This work has as objectives the implementation of a intelligent computational tool to identify the non-technical losses and to select its most relevant features, considering information from the database with industrial consumers profiles of a power company. The solution to this problem is not trivial and not of regional character, the minimization of non-technical loss represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. This work presents using the WEKA software to the proposed objective, comparing various classification techniques and optimization through intelligent algorithms, this way, can be possible to automate applications on Smart Grids. © 2012 IEEE.
Resumo:
In this paper, an exact series solution for the vibration analysis of circular cylindrical shells with arbitrary boundary conditions is obtained, using the elastic equations based on Flügge's theory. Each of the three displacements is represented by a Fourier series and auxiliary functions and sought in a strong form by letting the solution exactly satisfy both the governing differential equations and the boundary conditions on a point-wise basis. Since the series solution has to be truncated for numerical implementation, the term exactly satisfying should be understood as a satisfaction with arbitrary precision. One of the important advantages of this approach is that it can be universally applied to shells with a variety of different boundary conditions, without the need of making any corresponding modifications to the solution algorithms and implementation procedures as typically required in other techniques. Furthermore, the current method can be easily used to deal with more complicated boundary conditions such as point supports, partial supports, and non-uniform elastic restraints. Numerical examples are presented regarding the modal parameters of shells with various boundary conditions. The capacity and reliability of this solution method are demonstrated through these examples. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper is concerned with closed orbits of non-smooth vector fields on the plane. For a class of non-smooth vector fields we provide necessary and sufficient conditions for the existence of closed poly-trajectorie. By means of a regularization process we prove that hyperbolic closed poly-trajectories are limit sets of a sequence of limit cycles of smooth vector fields. In our approach the Poincaré Index for non-smooth vector fields is introduced. © 2013 Springer Science+Business Media New York.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others nature-inspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids. © 2013 IEEE.
Resumo:
A bounded upwinding scheme for numerical solution of hyperbolic conservation laws and Navier-Stokes equations is presented. The scheme is based on convection boundedness criterion and total variation diminishing stability criteria and developed by employing continuously differentiable functions. The accuracy of the scheme is verified by assessing the error and observed convergence rate on 1-D benchmark test cases. A comparative study between the new scheme and conventional total variation diminishing/convection boundedness criterion-based upwind schemes to solve standard nonlinear hyperbolic conservation laws is also accomplished. The scheme is then examined in the simulation of Newtonian and non-Newtonian fluid flows of increasing complexity; a satisfactory agreement has been observed in terms of the overall behavior. Finally, the scheme is used to study the hydrodynamics of a gas-solid flow in a bubbling fluidized bed. © 2013 John Wiley & Sons, Ltd.
Resumo:
ABSTRACT: The Kalman-Bucy method is here analized and applied to the solution of a specific filtering problem to increase the signal message/noise ratio. The method is a time domain treatment of a geophysical process classified as stochastic non-stationary. The derivation of the estimator is based on the relationship between the Kalman-Bucy and Wiener approaches for linear systems. In the present work we emphasize the criterion used, the model with apriori information, the algorithm, and the quality as related to the results. The examples are for the ideal well-log response, and the results indicate that this method can be used on a variety of geophysical data treatments, and its study clearly offers a proper insight into modeling and processing of geophysical problems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)