978 resultados para neural Correlates
Resumo:
Context: Cannabis use can both increase and reduce anxiety in humans. The neurophysiological substrates of these effects are unknown. Objective: To investigate the effects of 2 main psycho-active constituents of Cannabis sativa (Delta 9-tetrahydrocannabinol [Delta 9-THC] and cannabidiol [CBD]) on regional brain function during emotional processing. Design: Subjects were studied on 3 separate occasions using an event-related functional magnetic resonance imaging paradigm while viewing faces that implicitly elicited different levels of anxiety. Each scanning session was preceded by the ingestion of either 10 mg of Delta 9-THC, 600 mg of CBD, or a placebo in a double-blind, randomized, placebo-controlled design. Participants: Fifteen healthy, English-native, right-handed men who had used cannabis 15 times or less in their life. Main Outcome Measures: Regional brain activation (blood oxygenation level-dependent response), electrodermal activity (skin conductance response [SCR]), and objective and subjective ratings of anxiety. Results: Delta 9-Tetrahydrocannabinol increased anxiety, as well as levels of intoxication, sedation, and psychotic symptoms, whereas there was a trend for a reduction in anxiety following administration of CBD. The number of SCR fluctuations during the processing of intensely fearful faces increased following administration of Delta 9-THC but decreased following administration of CBD. Cannabidiol attenuated the blood oxygenation level dependent signal in the amygdala and the anterior and posterior cingulate cortex while subjects were processing intensely fearful faces, and its suppression of the amygdalar and anterior cingulate responses was correlated with the concurrent reduction in SCR fluctuations. Delta 9-Tetrahydrocannabinol mainly modulated activation in frontal and parietal areas. Conclusions: Delta 9-Tetrahydrocannabinol and CBD had clearly distinct effects on the neural, electrodermal, and symptomatic response to fearful faces. The effects of CBD on activation in limbic and paralimbic regions may contribute to its ability to reduce autonomic arousal and subjective anxiety, whereas the anxiogenic effects of Delta 9-THC may be related to effects in other brain regions.
Resumo:
Background: This study examined the effect of Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on brain activation during a motor inhibition task. Methods: Functional magnetic resonance imaging and behavioural measures were recorded while 15 healthy volunteers performed a Go/No-Go task following administration of either THC or CBD or placebo in a double-blind, pseudo-randomized, placebo-controlled repeated measures within-subject design. Results: Relative to placebo, THC attenuated activation in the right inferior frontal and the anterior cingulate gyrus. In contrast, CBD deactivated the left temporal cortex and insula. These effects were not related to changes in anxiety, intoxication, sedation, and psychotic symptoms. Conclusions: These data suggest that THC attenuates the engagement of brain regions that mediate response inhibition. CBD modulated function in regions not usually implicated in response inhibition.
Resumo:
Context: Ketamine evokes psychosislike symptoms, and its primary action is to impair N-methyl-D-aspartate glutamate receptor neurotransmission, but it also induces secondary increases in glutamate release. Objectives: To identify the sites of action of ketamine in inducing symptoms and to determine the role of increased glutamate release using the glutamate release inhibitor lamotrigine. Design: Two experiments with different participants were performed using a double-blind, placebo-controlled, randomized, crossover, counterbalanced-order design. In the first experiment, the effect of intravenous ketamine hydrochloride on regional blood oxygenation level dependent (BOLD) signal and correlated symptoms was compared with intravenous saline placebo. In the second experiment, pretreatment with lamotrigine was compared with placebo to identify which effects of ketamine are mediated by increased glutamate release. Setting: Wellcome Trust Clinical Research Facility, Manchester, England. Participants: Thirty-three healthy, right-handed men were recruited by advertisements. Interventions: In experiment 1, participants were given intravenous ketamine (1-minute bolus of 0.26 mg/ kg, followed by a maintenance infusion of 0.25 mg/ kg/ h for the remainder of the session) or placebo (0.9% saline solution). In experiment 2, participants were pretreated with 300 mg of lamotrigine or placebo and then were given the same doses of ketamine as in experiment 1. Main Outcome Measures: Regional BOLD signal changes during ketamine or placebo infusion and Brief Psychiatric Rating Scale and Clinician- Administered Dissociative States Scale scores. Results: Ketamine induced a rapid, focal, and unexpected decrease in ventromedial frontal cortex, including orbitofrontal cortex and subgenual cingulate, which strongly predicted its dissociative effects and increased activity in mid- posterior cingulate, thalamus, and temporal cortical regions (r= 0.90). Activations correlated with Brief Psychiatric Rating Scale psychosis scores. Lamotrigine pretreatment prevented many of the BOLD signal changes and the symptoms. Conclusions: These 2 changes may underpin 2 fundamental processes of psychosis: abnormal perceptual experiences and impaired cognitive- emotional evaluation of their significance. The results are compatible with the theory that the neural and subjective effects of ketamine involve increased glutamate release.
Resumo:
When infected with Trypanosoma cruzi, Beagle dogs develop symptoms similar to those of Chagas disease in human beings, and could be an important experimental model for a better understanding of the immunopathogenic mechanisms involved in chronic chagasic infection. This study evaluates IL-10, IFN-gamma and TNF-alpha production in the sera, culture supernatant, heart and cervical lymph nodes and their correlation with cardiomegaly, cardiac inflammation and fibrosis in Beagle dogs infected with T. cruzi. Pathological analysis showed severe splenomegaly, lymphadenopathy and myocarditis in all infected dogs during the acute phase of the disease, with cardiomegaly, inflammation and fibrosis observed in 83% of the animals infected by T. cruzi during the chronic phase. The data indicate that infected animals producing IL-10 in the heart during the chronic phase and showing high IL-10 production in the culture supernatant and serum during the acute phase had lower cardiac alterations (myocarditis, fibrosis and cardiomegaly) than those with high IFN-gamma and TNF-alpha levels. These animals produced low IL-10 levels in the culture supernatant and serum during the acute phase and did not produce IL-10 in the heart during the chronic phase of the disease. Our findings showed that Beagle dogs are a good model for studying the immunopathogenic mechanism of Chagas disease, since they reproduce the clinical and immunological findings described in chagasic patients. The data suggest that the development of the chronic cardiac form of the disease is related to a strong Th1 response during the acute phase of the disease, while the development of the indeterminate form results from a blend of Th1 and Th2 responses soon after infection, suggesting that the acute phase immune response is important for the genesis of chronic cardiac lesions. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Some cases of T-cell acute lymphoblastic leukaemia (ALL) express markers found in natural-killer (NK) cells, such as CD56 and CD16. Out of 84 T-cell ALL cases diagnosed at our Institution, CD56 and/or CD16 was detected in 24 (28.5%), which we designated T/NK-ALL group. Clinical features, laboratory characteristics, survival and expression of cytotoxic molecules were compared in T/NK-ALL and T-ALL patients. Significant differences were observed regarding age (24.9 vs. 16.4 years in T/NK-ALL and T-ALL, respectively, P = 0.006) and platelet counts (177 x 10(9)/l vs. 75 x 10(9)/l in T/NK-ALL and T-ALL, respectively, P = 0.03). Immunophenotypic analysis demonstrated that CD34, CD45RA and CD33 were more expressed in T/NK-ALL patients, whereas CD8 and terminal deoxynucleotidyl transferase were more expressed in T-ALL patients (P < 0.05). The mean overall survival (863 vs. 1869 d, P = 0.02) and disease-free survival (855 vs. 2095 d, P = 0.002) were shorter in patients expressing CD56/CD16. However, multivariate analysis identified CD56/CD16 as an independent prognostic factor only for DFS. Cytotoxic molecules were highly expressed in T/NK-ALL compared to T-ALL. Perforin, granzyme B and TIA-1 were detected in 12/17, 4/17 and 7/24 T/NK-ALL patients and in 1/20, 0/20 and 1/20 T-ALL respectively (P < 0.001, P = 0.036 and P = 0.054). Therefore, the presence of CD56/CD16 was associated with distinct clinical features and expression of cytotoxic molecules in the blasts.
Resumo:
Aims: Granular cell tumor (GCT) is a rare neoplasm that can appear in any site of the body, but most are located intraorally. Its histogenetic origin remains unclear. This report analyzes the immunoprofile of 15 cases of granular cell tumors, occurring in 13 women and 2 men and the lesions were located on the tongue or upper lip. Patient age ranged from 7 to 52. Methods: The patients demographic data and the cytological and architectural features of the lesions were analyzed in oral GCTs (n = 15). The lesions were also submitted to a panel of immunohistochemical stains with antibodies against S-100, p75, NSE, CD-68, Ki-67, Synaptofisin, HHF-35, SMA, EMA, Chromogranin, Progesterone, Androgen and Estrogen. Results: Among the fifteen cases analyzed, the most common location was the tongue (84.6%). Histologically, the tumors exhibited cellular proliferation composed mainly by polygonal cells presenting an abundant granular eosinophilic cytoplasm. The nuclei were central, and the cell membranes were moderately clear. No mitotic figures were observed. The immunohistochemical analysis showed positivity in all cases for S-100, p75, NSE and CD-68, and no immunoreactivity for Ki-67, Synaptofisin, HHF-35, SMA, EMA, Chromogranin, Progesterone, Androgen and Estrogen. Conclusion: The immunoprofile of granular cell tumors showed nerve sheath differentiation - lending support to their neural origin - and helping to establish a differential diagnosis between this lesion and other oral granular cell tumors, whether benign or malignant.
Resumo:
The mechanism of interaction between Mycobacterium leprae and neural cells has not been elucidated so far. No satisfactory interpretation exists as to the bacterium tropism to the peripheral nervous system in particular. The present study is a review of the micro-physiology of the extracellular apparatus attached to Schwann cells, as well as on the description of morphological units probably involved in the process of the binding to the bacterial wall.
Resumo:
Catalogues the demographic changes in Bangladesh during the period 1975-2000 and examines how they relate to key socio-economic attributes. Trends are examined in population growth, growth of the working age population, women’s workforce participation, age-dependency ratio, female-male ratio, longevity, fertility, mortality and mean age at first marriage. Bangladesh has made significant breakthroughs in all these areas, a feat not matched by most other South Asian countries, but comparable with the South-East Asia region as whole. The study isolates factors contributing to the changes in each attribute. It assesses the correlation between Bangladesh’s demographic changes and selected socio-economic indicators namely, its per capita GDP, female labour force participation, per capita public health expenditure and educational achievements by both men and women. All five socio-economic variables display statistically significant correlation, in varying degrees, with measures of the demographic changes. Per capita GDP is probably the most significant determinant of demographic changes in Bangladesh. The study observes that men’s education reinforces women’s education and with increased workforce participation contributed to reduced fertility. The study suggests that the role of family planning programs in curbing population growth in Bangladesh maybe overestimated.
Resumo:
Antibody isotypic responses (IgE, IgA, IgG1, IgG2, IgG3 and IgG4) to Schistosoma japonicum antigens-adult worm (AWA), soluble egg (SEA) and the recombinant proteins TEG (22.6-kDa tegumental antigen, Sj22) and PMY (paramyosin, Sj97)-were measured (in 1998) in a cohort of 179 Chinese subjects 2 years post-treatment. Subjects in the highest intensity re-infection group (> 100 eggs per gram faeces) had significantly higher levels of IgG1 and IgG4 against AWA. Analysis of IgG4/IgE ratios for AWA and SEA linked IgG4 excess to re-infection and IgE excess to non-re-infection. Two years after chemotherapeutic cure, 29 subjects, who were re-infected or never infected but highly water-exposed, were classified as epidemiologically susceptible (n = 15) or epidemiologically insusceptible to infection (n = 14). IgG4 levels against native antigens (AWA and SEA) were higher in susceptibles and IgE levels were higher in insusceptibles but antibody responses to the recombinant proteins (PMY and TEG) showed no clear pattern or difference between susceptibility groups. These and earlier findings provide evidence that immunity develops against schistosomiasis japonica in China and that susceptibility/resistance correlates with antibody isotypes against native schistosome antigens.
Resumo:
In this two part study, 811 participants completed the Eysenck Personality Profiler (EPP) and the Honey and Mumford Learning Styles Questionnaire (LSQ) and 263 adults completed the EPP and the Myers-Briggs Type Indicator (MBTI). As predicted there were many significant correlations which add to the concurrent validity of the EPP. When the overlap of the EPP with the MBTI and LSQ is compared with the overlap of the NEO-PI with the MBTI and LSQ (derived from Furnham, 1996a,b) it appears that the EPP has greater similarity with the LSQ, but the NEO-PI has greater similarity with the MBTI. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper proposed a novel model for short term load forecast in the competitive electricity market. The prior electricity demand data are treated as time series. The forecast model is based on wavelet multi-resolution decomposition by autocorrelation shell representation and neural networks (multilayer perceptrons, or MLPs) modeling of wavelet coefficients. To minimize the influence of noisy low level coefficients, we applied the practical Bayesian method Automatic Relevance Determination (ARD) model to choose the size of MLPs, which are then trained to provide forecasts. The individual wavelet domain forecasts are recombined to form the accurate overall forecast. The proposed method is tested using Queensland electricity demand data from the Australian National Electricity Market. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
It has long been believed that resistance training is accompanied by changes within the nervous system that play an important role in the development of strength. Many elements of the nervous system exhibit the potential for adaptation in response to resistance training, including supraspinal centres, descending neural tracts, spinal circuitry and the motor end plate connections between motoneurons and muscle fibres. Yet the specific sites of adaptation along the neuraxis have seldom been identified experimentally, and much of the evidence for neural adaptations following resistance training remains indirect. As a consequence of this current lack of knowledge, there exists uncertainty regarding the manner in which resistance training impacts upon the control and execution of functional movements. We aim to demonstrate that resistance training is likely to cause adaptations to many neural elements that are involved in the control of movement, and is therefore likely to affect movement execution during a wide range of tasks. We review a small number of experiments that provide evidence that resistance training affects the way in which muscles that have been engaged during training are recruited during related movement tasks. The concepts addressed in this article represent an important new approach to research on the effects of resistance training. They are also of considerable practical importance, since most individuals perform resistance training in the expectation that it will enhance their performance in-related functional tasks.
Resumo:
Performance in sprint exercise is determined by the ability to accelerate, the magnitude of maximal velocity and the ability to maintain velocity against the onset of fatigue. These factors are strongly influenced by metabolic and anthropometric components. Improved temporal sequencing of muscle activation and/or improved fast twitch fibre recruitment may contribute to superior sprint performance. Speed of impulse transmission along the motor axon may also have implications on sprint performance. Nerve conduction velocity (NCV) has been shown to increase in response to a period of sprint training. However, it is difficult to determine if increased NCV is likely to contribute to improved sprint performance. An increase in motoneuron excitability, as measured by the Hoffman reflex (H-reflex), has been reported to produce a more powerful muscular contraction, hence maximising motoneuron excitability would be expected to benefit sprint performance. Motoneuron excitability can be raised acutely by an appropriate stimulus with obvious implications for sprint performance. However, at rest reflex has been reported to be lower in athletes trained for explosive events compared with endurance-trained athletes. This may be caused by the relatively high, fast twitch fibre percentage and the consequent high activation thresholds of such motor units in power-trained populations. In contrast, stretch reflexes appear to be enhanced in sprint athletes possibly because of increased muscle spindle sensitivity as a result of sprint training. With muscle in a contracted state, however, there is evidence to suggest greater reflex potentiation among both sprint and resistance-trained populations compared with controls. Again this may be indicative of the predominant types of motor units in these populations, but may also mean an enhanced reflex contribution to force production during running in sprint-trained athletes. Fatigue of neural origin both during and following sprint exercise has implications with respect to optimising training frequency and volume. Research suggests athletes are unable to maintain maximal firing frequencies for the full duration of, for example, a 100m sprint. Fatigue after a single training session may also have a neural manifestation with some athletes unable to voluntarily fully activate muscle or experiencing stretch reflex inhibition after heavy training. This may occur in conjunction with muscle damage. Research investigating the neural influences on sprint performance is limited. Further longitudinal research is necessary to improve our understanding of neural factors that contribute to training-induced improvements in sprint performance.