994 resultados para nadp( )-dependent isocitrate dehydrogenase
Resumo:
Aerosols from biomass burning can alter the radiative balance of the Earth by reflecting and absorbing solar radiation(1). Whether aerosols exert a net cooling or a net warming effect will depend on the aerosol type and the albedo of the underlying surface(2). Here, we use a satellite-based approach to quantify the direct, top-of-atmosphere radiative effect of aerosol layers advected over the partly cloudy boundary layer of the southeastern Atlantic Ocean during July-October of 2006 and 2007. We show that the warming effect of aerosols increases with underlying cloud coverage. This relationship is nearly linear, making it possible to define a critical cloud fraction at which the aerosols switch from exerting a net cooling to a net warming effect. For this region and time period, the critical cloud fraction is about 0.4, and is strongly sensitive to the amount of solar radiation the aerosols absorb and the albedo of the underlying clouds. We estimate that the regional-mean warming effect of aerosols is three times higher when large-scale spatial covariation between cloud cover and aerosols is taken into account. These results demonstrate the importance of cloud prediction for the accurate quantification of aerosol direct effects.
Resumo:
Synchrotron-based high-pressure x-ray diffraction measurements indicate that compressibility, a fundamental materials property, can have a size-specific minimum value. The bulk modulus of nanocrystalline titania has a maximum at particle size of 15 nm. This can be explained by dislocation behavior because very high dislocation contents can be achieved when shear stress induced within nanoparticles counters the repulsion between dislocations. As particle size decreases, compression increasingly generates dislocation networks hardened by overlap of strain fields that shield intervening regions from external pressure. However, when particles become too small to sustain high dislocation concentrations, elastic stiffening declines. The compressibility has a minimum at intermediate sizes.
Resumo:
The elastic properties of the arterial wall have been the subject of physiological, clinical and biomedical research for many years. There is convincing evidence that the elastic properties of the large arteries are seriously impaired in the presence of cardiovascular disease (CVD), due to alterations in the intrinsic structural and functional characteristics of vessels [1]. Early detection of changes in the elastic modulus of arteries would provide a powerful tool for both monitoring patients at high cardiovascular risk and testing the effects of pharmaceuticals aimed at stabilizing existing plaques by stiffening them or lowering the lipids.
Resumo:
Robust estimation often relies on a dispersion function that is more slowly varying at large values than the square function. However, the choice of tuning constant in dispersion functions may impact the estimation efficiency to a great extent. For a given family of dispersion functions such as the Huber family, we suggest obtaining the "best" tuning constant from the data so that the asymptotic efficiency is maximized. This data-driven approach can automatically adjust the value of the tuning constant to provide the necessary resistance against outliers. Simulation studies show that substantial efficiency can be gained by this data-dependent approach compared with the traditional approach in which the tuning constant is fixed. We briefly illustrate the proposed method using two datasets.
Resumo:
A class of growth models incorporating time-dependent factors and stochastic perturbations are introduced. The proposed model includes the existing growth models used in fisheries as special cases. Particular attention is given to growth of a population (in average weight or length) from which observations are taken randomly each time and the analysis of tag-recapture data. Two real data sets are used for illustration: (a) to estimate the seasonal effect and population density effect on growth of farmed prawn (Penaeus monodon) from weight data and (b) to assess the effect of tagging on growth of barramundi (Lates calcarifer)
Resumo:
Natural mortality of marine invertebrates is often very high in the early life history stages and decreases in later stages. The possible size-dependent mortality of juvenile banana prawns, P. merguiensis (2-15 mm carapace length) in the Gulf of Carpentaria was investigated. The analysis was based on the data collected at 2-weekly intervals by beam trawls at four sites over a period of six years (between September 1986 and March 1992). It was assumed that mortality was a parametric function of size, rather than a constant. Another complication in estimating mortality for juvenile banana prawns is that a significant proportion of the population emigrates from the study area each year. This effect was accounted for by incorporating the size-frequency pattern of the emigrants in the analysis. Both the extra parameter in the model required to describe the size dependence of mortality, and that used to account for emigration were found to be significantly different from zero, and the instantaneous mortality rate declined from 0.89 week(-1) for 2 mm prawns to 0.02 week(-1) for 15 mm prawns.
Resumo:
Two algorithms that improve upon the sequent-peak procedure for reservoir capacity calculation are presented. The first incorporates storage-dependent losses (like evaporation losses) exactly as the standard linear programming formulation does. The second extends the first so as to enable designing with less than maximum reliability even when allowable shortfall in any failure year is also specified. Together, the algorithms provide a more accurate, flexible and yet fast method of calculating the storage capacity requirement in preliminary screening and optimization models.
Time dependent rotational flow of a viscous fluid over an infinite porous disk with a magnetic field
Resumo:
Both the semi-similar and self-similar flows due to a viscous fluid rotating with time dependent angular velocity over a porous disk of large radius at rest with or without a magnetic field are investigated. For the self-similar case the resulting equations for the suction and no mass transfer cases are solved numerically by quasilinearization method whereas for the semi-similar case and injection in the self-similar case an implicit finite difference method with Newton's linearization is employed. For rapid deceleration of fluid and for moderate suction in the case of self-similar flow there exists a layer of fluid, close to the disk surface where the sense of rotation is opposite to that of the fluid rotating far away. The velocity profiles in the absence of magnetic field are found to be oscillatory except for suction. For the accelerating freestream, (semi-similar flow) the effect of time is to reduce the amplitude of the oscillations of the velocity components. On the other hand the effect of time for the oscillating case is just the opposite.
Resumo:
Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different nanostructures such as nanowires, prism-shaped nanoparticles, etc. The model has also been modified to understand the melting of supported nanoparticles and superheating of embedded nanoparticles. In this article, we have reviewed the melting behaviour of nanostructures reported in the literature since 1909.
Resumo:
Using first-principles density-functional calculations, we determine and analyze the Born effective charges Z(*) that describe the coupling between electric field and atomic displacements for ferromagnetic double-perovskite compound, La2NiMnO6. We find that th Born effective charge matrix of Ni in La2NiMnO6, has an anomalously large antisymmetric component, whose magnitude reduces substantially upon change in the magnetic ordering between Ni and Mn, showing it to be a magnetism-dependent electrostructural coupling. We use a local picture of the electronic structure obtained with Wannier functions, along with its band-by-band decomposition to determine its electronic origin.
Resumo:
This splitting techniques for MARKOV chains developed by NUMMELIN (1978a) and ATHREYA and NEY (1978b) are used to derive an imbedded renewal process in WOLD's point process with MARKOV-correlated intervals. This leads to a simple proof of renewal theorems for such processes. In particular, a key renewal theorem is proved, from which analogues to both BLACKWELL's and BREIMAN's forms of the renewal theorem can be deduced.
Resumo:
In a multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) by Mycobacterium bovis bacillus Calmette-Guerin (BCG) may act as an important influencing factor for the effective host immunity. We here demonstrate that M. bovis BCG-triggered TLR2-dependent signaling leads to COX-2 and PGE2 expression in vitro in macrophages and in vivo in mice. Further, the presence of PGE2 could be demonstrated in sera or cerebrospinal fluid of tuberculosis patients. The induced COX-2 expression in macrophages is dependent on NF-kappa B activation, which is mediated by inducible NO synthase (iNOS)/NO-dependent participation of the members of Notch1-PI-3K signaling cascades as well as iNOS-independent activation of ERK1/2 and p38 MAPKs. Inhibition of iNOS activity abrogated the M. bovis BCG ability to trigger the generation of Notch1 intracellular domain (NICD), a marker for Notch1 signaling activation, as well as activation of the PI-3K signaling cascade. On the contrary, treatment of macrophages with 3-morpholinosydnonimine, a NO donor, resulted in a rapid increase in generation of NICD, activation of PI-3K pathway, as well as the expression of COX-2. Stable expression of NICD in RAW 264.7 macrophages resulted in augmented expression of COX-2. Further, signaling perturbations suggested the involvement of the cross-talk of Notch1 with members with the PI-3K signaling cascade. These results implicate the dichotomous nature of TLR2 signaling during M. bovis BCG-triggered expression of COX-2. In this perspective, we propose the involvement of iNOS/NO as one of the obligatory, early, proximal signaling events during M. bovis BCG-induced COX-2 expression in macrophages.
Resumo:
Instantaneous natural mortality rates and a nonparametric hunting mortality function are estimated from a multiple-year tagging experiment with arbitrary, time-dependent fishing or hunting mortality. Our theory allows animals to be tagged over a range of times in each year, and to take time to mix into the population. Animals are recovered by hunting or fishing, and death events from natural causes occur but are not observed. We combine a long-standing approach based on yearly totals, described by Brownie et al. (1985, Statistical Inference from Band Recovery Data: A Handbook, Second edition, United States Fish and Wildlife Service, Washington, Resource Publication, 156), with an exact-time-of-recovery approach originated by Hearn, Sandland and Hampton (1987, Journal du Conseil International pour l'Exploration de la Mer, 43, 107-117), who modeled times at liberty without regard to time of tagging. Our model allows for exact times of release and recovery, incomplete reporting of recoveries, and potential tag shedding. We apply our methods to data on the heavily exploited southern bluefin tuna (Thunnus maccoyii).
Resumo:
The crystal structures of the synthetic self-complementary octamer d(G-G-T-A-T-A-C-C) and its 5-bromouracil-containing analogue have been refined to R values of 20% and 14% at resolutions of 1·8 and 2·25 Å, respectively. The molecules adopt an A-DNA type double-helical conformation, which is minimally affected by crystal forces. A detailed analysis of the structure shows a considerable influence of the nucleotide sequence on the base-pair stacking patterns. In particular, the electrostatic stacking interactions between adjacent guanine and thymine bases produce symmetric bending of the double helix and a major-groove widening. The sugar-phosphate backbone appears to be only slightly affected by the base sequence. The local variations in the base-pair orientation are brought about by correlated adjustments in the backbone torsion angles and the glycosidic orientation. Sequence-dependent conformational variations of the type observed here may contribute to the specificity of certain protein-DNA interactions.
Resumo:
We demonstrate a chain length dependent crossover in the structural properties of linear hydrocarbon (n-alkane) chains using detailed atomistic simulations in explicit water. We identify a number of exotic structures of the polymer chain through energy minimization of representative snapshots collected from molecular dynamics trajectory. While the collapsed state is ring-like (circular) for small chains (CnH2n+2; n <= 20) and spherical for very long ones (n = 100), we find the emergence of ordered helical structures at intermediate lengths (n similar to 40). We find different types of disordered helices and toroid-like structures at n = 60. We also report a sharp transition in the stability of the collapsed state as a function of the chain length through relevant free energy calculations. While the collapsed state is only marginally metastable for C20H42, a clear bistable free energy surface emerges only when the chain is about 30 monomers long. For n = 30, the polymer exhibits an intermittent oscillation between the collapsed and the coil structures, characteristic of two stable states separated by a small barrier.