992 resultados para multiple regimes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS with both genetic and environmental contributing factors. Clinical symptoms are broadly characterized by initial onset, and progressive debilitating neurological impairment. In this study, RNA from MS chronic active and MS acute lesions was extracted, and compared with patient matched normal white matter by fluorescent cDNA microarray hybridization analysis. This resulted in the identification of 139 genes that were differentially regulated in MS plaque tissue compared to normal tissue. Of these, 69 genes showed a common pattern of expression in the chronic active and acute plaque tissues investigated (Pvalue<0.0001, ρ=0.73, by Spearman's ρ analysis); while 70 transcripts were uniquely differentially expressed (≥1.5-fold) in either acute or chronic active tissues. These results included known markers of MS such as the myelin basic protein (MBP) and glutathione S-transferase (GST) M1, nerve growth factors, such as nerve injury-induced protein 1 (NINJ1), X-ray and excision DNA repair factors (XRCC9 and ERCC5) and X-linked genes such as the ribosomal protein, RPS4X. Primers were then designed for seven array-selected genes, including transferrin (TF), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), GSTP1, crystallin, alpha-B (CRYAB), phosphomannomutase 1 (PMM1) and tubulin β-5 (TBB5), and real time quantitative (Q)-PCR analysis was performed. The results of comparative Q-PCR analysis correlated significantly with those obtained by array analysis (r=0.75, Pvalue<0.01, by Pearson's bivariate correlation). Both chronic active and acute plaques shared the majority of factors identified suggesting that quantitative, rather than gross qualitative differences in gene expression pattern may define the progression from acute to chronic active plaques in MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell cycle is a carefully choreographed series of phases that when executed successfully will allow the complete replication of the genome and the equal division of the genome and other cellular content into two independent daughter cells. The inability of the cell to execute cell division successfully can result in either checkpoint activation to allow repair and/or apoptosis and/or mutations/errors that may or may not lead to tumourgenesis. Cyclin A/CDK2 is the primary cyclin/CDK regulating G2 phase progression of the cell cycle. Cyclin A/CDK2 activity peaks in G2 phase and its inhibition causes a G2 phase delay that we have termed 'the cyclin A/CDK2 dependent G2 delay'. Understanding the key pathways that are involved in the cyclin A/CDK2 dependent G2 delay has been the primary focus of this study. Characterising the cyclin A/CDK2 dependent G2 delay revealed accumulated levels of the inactive form of the mitotic regulator, cyclin B/CDK1. Surprisingly, there was also increased microtubule nucleation at the centrosomes, and the centrosomes stained for markers of cyclin B/CDK1 activity. Both microtubule nucleation at the centrosomes and phosphoprotein markers were lost with short-term treatment of CDK1/2 inhibition. Cyclin A/CDK2 localised at the centrosomes in late G2 phase after separation of the centrosomes but before the start of prophase. Thus G2 phase cyclin A/CDK2 controls the timing of entry into mitosis by controlling the subsequent activation of cyclin B/CDK1, but also has an unexpected role in coordinating the activation of cyclin B/CDK1 at the centrosome and in the nucleus. In addition to regulating the timing of cyclin B/CDK1 activation and entry into mitosis in the unperturbed cell cycle, cyclin A/CDK2 also was shown to have a role in G2 phase checkpoint recovery. Known G2 phase regulators were investigated to determine whether they had a role in imposing the cyclin A/ CDK2 dependent G2 delay. Examination of the critical G2 checkpoint arrest protein, Chk1, which also has a role during unperturbed G2/M phases revealed the presence of activated Chk1 in G2 phase, in a range of cell lines. Activated Chk1 levels were shown to accumulate in cyclin A/CDK2 depleted/inhibited cells. Further investigations revealed that Chk1, but not Chk2, depletion could reverse the cyclin A/CDK2 dependent G2 delay. It was confirmed that the accumulative activation of Chk1 was not a consequence of DNA damage induced by cyclin A depletion. The potential of cyclin A/CDK2 to regulate Chk1 revealed that the inhibitory phosphorylations, Ser286 and Ser301, were not directly catalysed by cyclin A/CDK2 in G2 phase to regulate mitotic entry. It appeared that the ability of cyclin A/CDK2 to regulate cyclin B/CDK1 activation impacted cyclin B/CDK1s phosphorylation of Chk1 on Ser286 and Ser301, thereby contributing to the delay in G2/M phase progression. Chk1 inhibition/depletion partially abrogated the cyclin A/CDK2 dependent G2 delay, and was less effective in abrogating G2 phase checkpoint suggesting that other cyclin A/CDK2 dependent mechanisms contributed to these roles of cyclin A/CDK2. In an attempt to identify these other contributing factors another G2/M phase regulator known to be regulated by cyclin A/CDK2, Cdh1 and its substrates Plk1 and Claspin were examined. Cdh1 levels were reduced in cyclin A/CDK2 depleted/inhibited cells although this had little effect on Plk1, a known Cdh1 substrate. However, the level of another substrate, Claspin, was increased. Cdh1 depletion mimicked the effect of cyclin A depletion but to a weaker extent and was sufficient at increasing Claspin levels similar to the increase caused by cyclin A depletion. Co-depletion of cyclin A and Claspin blocked the accumulation of activated Chk1 normally seen with cyclin A depletion alone. However Claspin depletion alone did not reduce the cyclin A/CDK2 dependent G2 delay but this is likely to be a result of inhibition of S phase roles of Claspin. Together, these data suggest that cyclin A/CDK2 regulates a number of different mechanisms that contribute to G2/M phase progression. Here it has been demonstrated that in normal G2/M progression and possibly to a lesser extent in G2 phase checkpoint recovery, cyclin A/CDK2 regulates the level of Cdh1 which in turn affects at least one of its substrates, Claspin, and consequently results in the increased level of activated Chk1 observed. However, the involvement of Cdh1 and Claspin alone does not explain the G2 phase delay observed with cyclin A/CDK2 depletion/inhibition. It is likely that other mechanisms, possibly including cyclin A/CDK2 regulation of Wee1 and FoxM1, as reported by others, combine with the mechanism described here to regulate normal G2/M phase progression and G2 phase checkpoint recovery. These findings support the critical role for cyclin A/CDK2 in regulating progression into mitosis and suggest that upstream regulators of cyclin A/CDK2 activation will also be critical controllers of this cell cycle transition. The pathways that work to co-ordinate cell cycle progression are very intricate and deciphering these pathways, required for normal cell cycle progression, is key to understanding tumour development. By understanding cell cycle regulatory pathways it will allow the identification of the pathway/s and their mechanism/s that become affected in tumourgenesis. This will lead to the development of better targeted therapies, inferring better efficacy with fewer side effects than commonly seen with the use of traditional therapies, such as chemotherapy. Furthermore, this has the potential to positively impact the development of personalised medicines and the customisation of healthcare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most integrated approach toward understanding the multiple molecular events and mechanisms by which cancer may develop is the application of gene expression profiling using microarray technologies. As molecular alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple samples in a high throughput manner. Since the development of microarray technologies, together with the advances in RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, their limitations, clinical implications including prognostic relevance and gene signature significance along with potential improvements for the next generation of microarray studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Several lines of evidence suggests that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but a complete mapping the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors which may be involved in one subtype may not be in others. We investigated the possibility that this network could be mapped using microarray technologies and modern bioinformatics methods on a dataset from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls, Methodology/Principal Findings We have used two different analytical methodologies: a differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that seem to be statistically overrepresented in genes which are either differentially expressed (or differentially co-expressed) in cases and controls (e.g. V$KROX_Q6, p-value < 3.31E-6; V$CREBP1_Q2, p-value < 9.93E-6, V$YY1_02, p-value < 1.65E-5). Conclusions/significance: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. Analysing the published literature we have found that these transcription factors are involved in the early T-lymphocyte specification and commitment as well as in oligodendrocytes dedifferentiation and development. The most significant transcription factors motifs were for the Early Growth response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Single nucleotide polymorphisms (SNPs) rs429358 (ε4) and rs7412 (ε2), both invoking changes in the amino-acid sequence of the apolipoprotein E (APOE) gene, have previously been tested for association with multiple sclerosis (MS) risk. However, none of these studies was sufficiently powered to detect modest effect sizes at acceptable type-I error rates. As both SNPs are only imperfectly captured on commonly used microarray genotyping platforms, their evaluation in the context of genome-wide association studies has been hindered until recently. Methods We genotyped 12 740 subjects hitherto not studied for their APOE status, imputed raw genotype data from 8739 subjects from five independent genome wide association studies datasets using the most recent high-resolution reference panels, and extracted genotype data for 8265 subjects from previous candidate gene assessments. Results Despite sufficient power to detect associations at genome-wide significance thresholds across a range of ORs, our analyses did not support a role of rs429358 or rs7412 on MS susceptibility. This included meta-analyses of the combined data across 13 913 MS cases and 15 831 controls (OR=0.95, p=0.259, and OR 1.07, p=0.0569, for rs429358 and rs7412, respectively). Conclusion Given the large sample size of our analyses, it is unlikely that the two APOE missense SNPs studied here exert any relevant effects on MS susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human leucocyte antigen (HLA)-DRB1*1501 and other class II alleles influence susceptibility to multiple sclerosis (MS), but their contribution if any to the clinical course of MS remains uncertain. Here, we have investigated DRB1 alleles in a large sample of 1230 Australian MS cases, with some enrichment for subjects with primary progressive (PPMS) disease (n = 246) and 1210 healthy controls. Using logistic regression, we found that DRB1*1501 was strongly associated with risk (P = 7 x 10-45), as expected, and after adjusting for DRB1*1501, a predisposing effect was also observed for DRB1*03 (P = 5 x 10-7). Individuals homozygous for either DRB1*15 or DRB1*03 were considerably more at risk of MS than heterozygotes and non-carriers. Both the DRB1*04 and the DRB1*01/DRB1*15 genotype combination, respectively, protected against PPMS in comparison to subjects with relapsing disease. Together, these data provide further evidence of heterogeneity at the DRB1 locus and confirm the importance of HLA variants in the phenotypic expression of MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study described in this article aimed to identify issues relating to incontinence and assess the impact of referral to a continence adviser on the lives of people with multiple sclerosis (MS). The study design used an in-depth, two-phase anonymous mail survey within a general community as nominated by the participants. Fifty-six people participated in phase 1 and eleven people completed phase 2. The results indicated that incontinence is a problem for the vast majority of participants — people with MS. One-third of the eligible participants took up the option of a consultation, assessment and treatment from a continence nurse. Reasons for not taking up the visit from the continence nurse included ‘managing OK’, ‘didn’t think it would help’, ‘embarrassed’ and ‘too busy’. Increasing awareness of urinary incontinence in the community is important and education needs to focus on at-risk groups in presenting the range of options available to assist people experiencing incontinence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, the majority of semiconductor fabrication plants (fabs) conduct equipment preventive maintenance based on statistically-derived time- or wafer-count-based intervals. While these practices have had relative success in managing equipment availability and product yield, the cost, both in time and materials, remains high. Condition-based maintenance has been successfully adopted in several industries, where costs associated with equipment downtime range from potential loss of life to unacceptable affects to companies’ bottom lines. In this paper, we present a method for the monitoring of complex systems in the presence of multiple operating regimes. In addition, the new representation of degradation processes will be used to define an optimization procedure that facilitates concurrent maintenance and operational decision-making in a manufacturing system. This decision-making procedure metaheuristically maximizes a customizable cost function that reflects the benefits of production uptime, and the losses incurred due to deficient quality and downtime. The new degradation monitoring method is illustrated through the monitoring of a deposition tool operating over a prolonged period of time in a major fab, while the operational decision-making is demonstrated using simulated operation of a generic cluster tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale Developing models to efficiently explore the mechanisms by which stress can mediate reinstatement of drug-seeking behavior is crucial to the development of new pharmacotherapies for alcohol use disorders. Objectives We examined the effects of multiple reinstatement sessions using the pharmacological stressor, yohimbine, in ethanol- and sucrose-seeking rats in order to develop a more efficient model of stress-induced reinstatement. Methods Long–Evans rats were trained to self-administer 10% ethanol with a sucrose-fading procedure, 20% ethanol without a sucrose-fading procedure, or 5% sucrose in 30-min operant self-administration sessions, followed by extinction training. After reaching extinction criteria, the animals were tested once per week with yohimbine vehicle and yohimbine (2 mg/kg), respectively, 30 min prior to the reinstatement sessions or blood collection. Levels of reinstatement and plasma corticosterone (CORT) were determined each week for four consecutive weeks. Results Yohimbine induced reinstatement of ethanol- and sucrose-seeking in each of the 4 weeks. Interestingly, the magnitude of the reinstatement decreased for the 10% ethanol group after the first reinstatement session but remained stable for the 20% ethanol group trained without sucrose. Plasma CORT levels in response to injection of both vehicle and yohimbine were significantly higher in the ethanol-trained animals compared to sucrose controls. Conclusions The stable reinstatement in the 20% ethanol group supports the use of this training procedure in studies using within-subject designs with multiple yohimbine reinstatement test sessions. Additionally, these results indicate that the hormonal response to stressors can be altered following extinction from self-administration of relatively modest amounts of ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extrapulmonary small cell and small cell neuroendocrine tumors of unknown primary site are, in general, aggressive neoplasms with a short median survival. Like small cell lung cancer (SCLC), they often are responsive to chemotherapy and radiotherapy. Small cell lung cancer and well differentiated neuroendocrine carcinomas of the gastrointestinal tract and pancreas tend to express somatostatin receptors. These tumors may be localized in patients by scintigraphic imaging using radiolabeled somatostatin analogues. A patient with an anaplastic neuroendocrine small cell tumor arising on a background of multiple endocrine neoplasia type 1 syndrome is reported. The patient had a known large pancreatic gastrinoma and previously treated parathyroid adenopathy. At presentation, there was small cell cancer throughout the liver and skeleton. Imaging with a radiolabeled somatostatin analogue, 111In- pentetreotide (Mallinckrodt Medical B. V., Petten, Holland), revealed all sites of disease detected by routine biochemical and radiologic methods. After six cycles of chemotherapy with doxorubicin, cyclophosphamide, and etoposide, there was almost complete clearance of the metastatic disease. 111In-pentetreotide scintigraphy revealed uptake consistent with small areas of residual disease in the liver, the abdomen (in mesenteric lymph nodes), and posterior thorax (in a rib). The primary gastrinoma present before the onset of the anaplastic small cell cancer showed no evidence of response to the treatment. The patient remained well for 1 year and then relapsed with brain, lung, liver, and skeletal metastases. Despite an initial response to salvage radiotherapy and chemotherapy with carboplatin and dacarbazine, the patient died 6 months later.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. Results We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, ?, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and ?. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D = 161 - 243 ?m2 hour-1, q = 0.3 - 0.5 (low to moderate strength) and ? = 0.0305 - 0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. Conclusions Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.