933 resultados para multi-phase flow
Resumo:
A study has been made of the coalescence of secondary dispersions in beds of monosized glass ballotini. The variables investigated were superficial velocity, bed depth, ballotini size and dispersed phase concentration. Equipment was designed to generate a toluene ln water dispersion with phase ratios from 0.1 - 1.0 v/v % and whose mean drop size was determined using a Coulter Counter. The coalesced drops were sized by photography and the mean diameter of the effluent drops was determined using a Malvern Particle Size Analyser. Previous models describing single phase flow in porous media are reviewed and it was found that the experimental data obtained in this study is best represented by the Carman-Kozeny equations. Relative permeability correlations were used to predict the saturation profiles across the bed from measured two phase pressure drop data. Theoretical comparison of drop capture mechanisms indicated that direct and indirect interception are predominant. The total capture efficiency for the bed can also be evaluated using Spielman and Fitzpatrick's correlation.The resulting equation is used to predict the initial, local drop capture rate in a coalescer. A mathematical description of the saturation profiles is formulated and verified by the saturation profiles obtained by relative permeability. Based on the Carman-Kozeny equation, an expression is derived analytically to .predict the two phase pressure drop using the parameters which characterise the saturation profiles. By specifying the local saturation at the inlet face for a given velocity and phase ratio, good agreement between experimental pressure drop data and the model predictions was obtained. An attempt to predict the exit drop size has been made using an analogy for flow through non cylindrical channels.
Resumo:
The mechanisms by which drops of secondary liquid dispersion ie. <100μ m, are collected, coalesced and transferred have been studied in particulate beds of different sizes and heights of glass ballotini. The apparatus facilitated different coalescer cell arrangements. The liquid-liquid system was toluene/de-ionised water. The inlet drop size distribution was measured by microscopy and using the Malvern Particle Size analyser; the outlet dispersion was sized by photography. The effect of packed height and packing size upon critical velocity, pressure drop and coalescence efficiency have been investigated. Single and two phase flow pressure drops across the packing were correlated by modified Blake-Kozeny equations. Two phase pressure drop was correlated by two equations, one for large ballotini sizes (267μm - 367μm), the other for small ballotini sizes (93μm- 147.5μm). The packings were efficient coalescers up to critical velocities of 3 x 10-2 m/s to 5 x 10-2 m/s. The saturation was measured across the bed using relative permeability and a mathematical model developed which related this profile to measured pressure drops. Filter coefficients for the range of packing studied were found to be accurately predicted from a modified queueing drop model.
Resumo:
The literature relating to haze formation, methods of separation, coalescence mechanisms, and models by which droplets <100 μm are collected, coalesced and transferred, have been reviewed with particular reference to particulate bed coalescers. The separation of secondary oil-water dispersions was studied experimentally using packed beds of monosized glass ballotini particles. The variables investigated were superficial velocity, bed depth, particle size, and the phase ratio and drop size distribution of inlet secondary dispersion. A modified pump loop was used to generate secondary dispersions of toluene or Clairsol 350 in water with phase ratios between 0.5-6.0 v/v%.Inlet drop size distributions were determined using a Malvern Particle Size Analyser;effluent, coalesced droplets were sized by photography. Single phase flow pressure drop data were correlated by means of a Carman-Kozeny type equation. Correlations were obtained relating single and two phase pressure drops, as (ΔP2/μc)/ΔP1/μd) = kp Ua Lb dcc dpd Cine A flow equation was derived to correlate the two phase pressure drop data as, ΔP2/(ρcU2) = 8.64*107 [dc/D]-0.27 [L/D]0.71 [dp/D]-0.17 [NRe]1.5 [e1]-0.14 [Cin]0.26 In a comparison between functions to characterise the inlet drop size distributions a modification of the Weibull function provided the best fit of experimental data. The general mean drop diameter was correlated by: q_p q_p p_q /β Γ ((q-3/β) +1) d qp = d fr .α Γ ((P-3/β +1 The measured and predicted mean inlet drop diameters agreed within ±15%. Secondary dispersion separation depends largely upon drop capture within a bed. A theoretical analysis of drop capture mechanisms in this work indicated that indirect interception and London-van der Waal's mechanisms predominate. Mathematical models of dispersed phase concentration m the bed were developed by considering drop motion to be analogous to molecular diffusion.The number of possible channels in a bed was predicted from a model in which the pores comprised randomly-interconnected passage-ways between adjacent packing elements and axial flow occured in cylinders on an equilateral triangular pitch. An expression was derived for length of service channels in a queuing system leading to the prediction of filter coefficients. The insight provided into the mechanisms of drop collection and travel, and the correlations of operating parameters, should assist design of industrial particulate bed coalescers.
Resumo:
Reversed-phase high-performance liquid chromatography procedures were developed for the analysis of pyrimidine-based drugs bropirimine and its derivatives (2-N-acetyl- and 2-N-propanoyl-) and for pyrimethamine and its 2/4- substituted derivatives (2, N-propanoyl and 2,4-N, N-dipropanoyl-) and its 6- substituted (methyl-, ethyl-, propyl- and isopropyl- carboxylates) analogues. Stability studies indicated that these derivatives were not sufficiently labile to act as potential prodrugs. Solubility-pH profiles were constructed from which the dissociation constants were calculated. The physicochemical properties of these compounds were studied and attempts were made to increase the poor aqueous solubility of bropirimine (35μg/mL) by prodrug synthesis, solvate formation (acetic acid, N, N-dimethylformamide and N-methylformamide) and the use of co-solvents and additives. The first two methods proved to be fruitless whereas the latter method resulted in an intravenous formulation incorporating 32mg/mL of bropirimine. An in-vitro method for the detection of precipitation was developed and the results suggested that by using low injection rates (< 0.24mL/min) and high mobile phase flow rates (> 500mL/hr) precipitation could be minimised. Differential scanning calorimetry showed that bropirimine debrominates in the presence of a number of additives commonly used in formulation work but the temperature at which this occurred were usually > 200oC. In-vitro work gave encouraging results for the possibility of rectal delivery of bropirimine but in-vivo work on rabbits showed considerable variations in the resulting plasma levels and pharmacokinetic parameters.
Resumo:
Organizations today face intense competitive and economic pressures leading to large scale transformation of existing business operations and transactions. In addition, organizations have adopted automated business processes to deal with partners and customers. E-business diffusion is a multi-phase process, moving from initiation through to routinisation and an insight into the adoption processes helps organizations to adopt e-business more effectively. It is imperative that organizations effectively manage the e-business environment, and all associated changes to accommodate the changing relationships with customers and business partners and more importantly, to improve performance. This chapter discusses the process of e-business implementation, usage and diffusion (routinisation stage) on business performance. © 2010, IGI Global.
Resumo:
The simulation of two-phase flow for an experimental airlift reactor (32-l volume) using commercially available software from Fluent Incorporated is presented here (http://www.fluent.co.uk). Data from the simulation is compared with the experimental data obtained by the tracking of a magnetic particle and analysis of the pressure drop to determine the gas hold-up. Comparisons between vertical velocity and gas hold-up were made for a series of experiments where the superficial gas velocity in the riser was adjusted between 0.01 and 0.075 m s-1. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The simulation of two-phase flow in bubble columns using commercially available software fromFluent Incorporated is presented here. Data from a bubble column with a ratio of height to thecolumn diameter of 5 : 1 are compared with simulations and experimental results for time-averaged velocity and Reynolds stress proles are used to validate transient, two-dimensional simulations.The models are based on multiphase biological reactors with applications in the food industry. An example case of the mass transfer of oxygen through the liquid phase is also presented.
Resumo:
The paper presents a 3-dimensional simulation of the effect of particle shape on char entrainment in a bubbling fluidised bed reactor. Three char particles of 350 μm side length but of different shapes (cube, sphere, and tetrahedron) are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions, reactor design and particle shape the char particles will either be entrained from the reactor or remain inside the bubbling bed. The sphericity of the particles is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. The simulation has been performed with a completely revised momentum transport model for bubble three-phase flow, taking into account the sphericity factors, and has been applied as an extension to the commercial finite volume code FLUENT 6.3. © 2010 Elsevier B.V.All rights reserved.
Resumo:
The measurement of flow through the prediction of differential pressure is widely used in industrial day-to-day, this happens mainly due to the fact that it is used for various types of fluids, such as gas flow and liquid with viscosity distinct even flow of fluids with particles in suspension. The suitability of this equipment for measuring mass flow in two-phase flow is of paramount importance for technological development and reliability of results. When it comes to two-phase flow the relationship between the fluids and their interactions are of paramount importance in predicting the flow. In this paper, we propose the use of concentric orifice plate used in small diameter pipes of 25.4 mm order where a two-phase flow flows between water-air. The measurement of single-phase flow was made with the use of data in NBR 5167-1 which was used to Stolz equation for measuring discharge coefficient. In the two-phase flow was used two correlations widely used in the prognosis of mass flow, the pattern of Zhang (1992) and the model of Chisholm (1967), to the homogeneous flow model. It was observed that the behavior found in Zhang model are consistent more realistic way the mass flow of two-phase flow, since the model Chisholm extrapolate the parameters for the downstream pressure P2, the orifice plate, and the rated discharge coefficient. The use of the change in pressure drop P1-P2 and discharge coefficient, led to a better convergence of the values obtained for the two-phase air-water stream.
Resumo:
To study the dissipation of heat generated due to the formation of pinholes that cause local hotspots in the catalyst layer of the Polymer Electrolyte Fuel Cell, a two-phase non-isothermal model has been developed by coupling Darcy’s law with heat transport. The domain under consideration is a section of the membrane electrode assembly with a half-channel and a half-rib. Five potential locations where a pinhole might form were analyzed: at the midplane of the channel, midway between the channel midplane and the channel wall, at the channel or rib wall, midway between the rib midplane and the channel wall, at the midplane of the rib. In the first part of this work, a preliminary thermal model was developed. The model was then refined to account for the two-phase effects. A sensitivity study was done to evaluate the effect of the following properties on the maximum temperature in the domain: Catalyst layer thermal conductivity, the Microporous layer thermal conductivity, the anisotropy factor of the Catalyst layer thermal conductivity, the Porous transport layer porosity, the liquid water distribution and the thickness of the membrane and porous layers. Accounting for the two-phase effects, a slight cooling effect was observed across all hotspot locations. The thermal properties of the catalyst layer were shown to have a limited impact on the maximum temperature in the catalyst layer of new fuel cells without pinhole. However, as hotspots start to appear, thermal properties play a more significant role in mitigating the thermal runaway.
Resumo:
The spouted bed was widely used due to its good mixing of particles and effective phase transferability between the gas and solid phase. In this paper, the transportation process of particles in a 3D spouted bed was studied using the Computational Particle Fluid Dynamics (CPFD) numerical method. Experiments were conducted to verify the validity of the simulation results. Distributions of the pressure, velocities and particle concentration of transportation devices were investigated. The motion state and characteristics of multiphase flows in the transportation device were demonstrated under various operating conditions. The results showed that a good consistency was obtained between the simulated results and the experimental results. The motion characteristics of the gas-solid two-phase flow in the device was effectively predicted, which could assist the optimal operating condition estimation for the spouted transportation process.
Resumo:
In 2015 Ireland has arguably begun to make its first bold steps in confronting the challenges of energy transition, with the objective of a “low carbon, climate resilient and environmentally sustainable economy by the end of the year 2050” expressed in the 2015 Climate Action and Low Carbon Development Bill and the 2015 Energy Bill acknowledging that energy transformation relied on a new breed of ‘energy citizens’. These represent the first formal articulation of Ireland’s ambition to engage in a radical, long-term and far-reaching transition process, and raises a myriad of questions over how this can be operationalised, resourced and whether it can maintain political momentum. A range of perspectives on these issues is provided in the growing body of literature on transition theories (Rotmans et al 2001, Markard et al 2012) and the inter-disciplinary EPA-funded CC Transitions project, based at Queen’s University Belfast, represents an attempt to translate this into the context of Ireland’s institutions and technological profile. By relating this to international research on sustainability transitions, which conceptualises transitions as multi-level, multi-phase and multi-actor processes, this paper will explore the opportunities of alternative pathways that could take Ireland towards a more progressing, inclusive and effective low carbon future. Drawing on a number of case studies it will highlight some of the capacities for transition required in Irish society: where these exist, how they are being built or enabled, and the barriers to wider social change.
Resumo:
Para confirmar e validar códigos computacionais de escoamento de fluidos, importantes na segurança de reatores nucleares, é preciso que sejam realizadas medidas experimentais. Como a geração de vapor no fluido refrigerante diminui a eficiência de troca térmica a fração de vazio passa a ser um dos parâmetros mais importantes a ser obtido, e que, num escoamento vertical, pode ser conhecido através da quantidade de bolha e seu diâmetro médio.