999 resultados para monogenetic volcanism
Resumo:
New data on biostratigraphy, sedimentology and tectonics of the Russian Far Eastern region (Lower Amurian terrane) are presented. This study shows that sedimentary sequence of the terrane consists of interbedded Radiolaria-bearing siliceous and volcaniclastic sediments spanning an interval of over 90 million years. It is shown that accumulation of radiolarian deposits on an oceanic plate was associated with alkaline (intraplate) volcanism in the Jurassic, while the plate was drifting, and with some are volcanism during the Early Cretaceous. The younger siliceous rocks contain volcaniclastic material and indicate that the studied sequence approached the trench in the Early Cretaceous (Hauterivian-Barremian) and became accreted in the late Albian-early Cenomanian. We describe and illustrate radiolarian species extracted fi om 21 samples. A taxonomic list of 194 taxa and nine plates of Jurassic-Early Cretaceous Radiolaria are presented.
Resumo:
The Jalta and Jebel Ghozlane ore deposits are located in the extreme North of Tunisia, within the Nappe zone. The mineralization of Jalta, hosted in Triassic dolostones and the overlying Mio-Pliocene conglomerates, consists of abundant galena, barite, and cerussite with accessory sphalerite, pyrite, and jordanite. At Jebel Ghozlane, large Pb-Zn concentrations occur in the Triassic dolostones and Eocene limestones. The mineral association consists of galena, sphalerite, barite, and celestite and their oxidation products (cerussite, smithsonite, and anglesite). Lead isotope ratios in galena from both districts are relatively homogeneous ((206)Pb/(204)Pb = 18.702-18.823, (207)Pb/(204)Pb = 15.665-15.677, (208)Pb/(204)Pb = 38.725-38.875). The delta(34)S values for sulfates from both areas (+12.2 to +16.2 parts per thousand at Jalta and + 14.3 to + 19.4 parts per thousand at Jebel Ghozlane) are compatible with a derivation of sulfur from marine sulfates, possibly sourced from the Triassic evaporites. The delta(34)S values of the sulfides have a range between -10 and +12.5 parts per thousand at Jalta, and between -9.1 and +22.1 parts per thousand at Jebel Ghozlane. The large range of values suggests reduction of the sulfate by bacterial and/or thermochemical reduction of sulfate to sulfur. The high delta(34)S values of sulfides require closed-system reduction processes. The isotopically light carbon in late calcites (-6.3 to -2.5 parts per thousand) and authigenic dolomite (-17.6 parts per thousand) suggests an organic source of at least some of the carbon in these samples, whereas the similarity of the delta(18)O values between calcite (+24.8 parts per thousand) and the authigenic dolomite (+24.7 parts per thousand) of Jalta and their respective host rocks reflects oxygen isotope buffering of the mineralizing fluids by the host rock carbonates. The secondary calcite isotope compositions of Jalta are compatible with a hydrothermal fluid circulation at approximately 100 to 200 degrees C, but temperatures as low as 50 degrees C may be indicated by the late calcite of Jebel Ghozlane (delta(18)O of +35.9 parts per thousand). Given the geological events related to the Alpine orogeny in the Nappe zone (nappe emplacement, bimodal volcanism, and reactivation of major faults, such as Ghardimaou-Cap Serrat) and the Neogene age of the host rocks in several localities, a Late-Miocene age is proposed for the Pb-Zn ore deposits considered in this study. Remobilization of deep-seated primary deposits in the Paleozoic sequence is the most probable source for metals in both localities considered in this study and probably in the Nappe zone as a whole. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
En el sector valenciano de la Cordillera Iberica se desarrolla durante el Jurásico un volcanismo fundamentalmente piroclastico, con emisiones basalticas y traquibasalticas en el Pliensbachiense, Toarciense y Bajociense. La cartografia de los afloramientos permite definir dos alineaciones NW-SE (franja de Caudiel, alineación piroclástica de Alcublas), asi como un rea ms amplia de traza general NE-SW en las sierras de Javalambre y Camarena. Tal disposicion regional sugiere que las manifesiaciones volcaiiicas ocurren segun dosdirecciones principales de fracturacion tardihercinica~(NW-SEy NK-SW) y an posiblemente a favor de los puntos de interseccin de ambos sistemas estructurales. La direccin NW-SE ejerce el maximo control de la actividad volcnica jursica, al igual que previamente durante el Triasico superior (linea ofitica de Altura).
Resumo:
El volcanismo neógenocuaternario de Catalunya está asociado al sistema de fracturas escalonadas, de orientación preferente SW-NE y NW-SE, que condiciona también las depresiones tectónicas o fosas neógenas. Las dataciones radiométricas ponen de manifiesto una actividad volcánica entre 10 y 0.1 m.a., localizándose las erupciones más antiguas en la fosa del Empordà, mientras que el volcanismo cuaternario se concentra en las proximidades de Olot (La Garrotxa). El magmatismo es de carácter alcalino, con términos exclusivamente básicos (basanitas), salvo un afloramiento traquítico. Son frecuentes los xenolitos de rocas sedimentarias y plutónicas básicas y ácidas, presentando estos últimos el mayor grado de transformación. Los caracteres estructurales, geoquímicos y mineralógicos, junto a las relaciones isotópicas Sr8YlSr86 apoyan un origen profundo, subcrustal, del magma, y definen un volcanismo intraplaca como el que corresponde a un modelo de rift embrionario sin atenuación litosférica y con escasas manifestacion
Resumo:
Se ofrecen dos ejemplos de incorporación de bioclastos por parte de coladas piroclásticas en ambiente subacuático. Estos ejemplos proceden del Ordovicico Superior-Silrico inferior del Sarrabus (Sureste de Cerdeña, Italia) y el Mioceno del Arcuentu (Suroeste de Cerdeña, Italia). Los bioclastos aparecen en ambos casos en el frente de coladas piroclásticas, y se han preservdo en forma de moldes. Tras una exposición detallada de los materiales se propone un modelo genético común para ambos ejemplos, en el que tras la asimilación de los bioclastos en el frente de la colada estos sufren disolución y se preservan en los raros casos en los que la colada piroclástica se enfria rápidamente.
Resumo:
Past temperature variations are usually inferred from proxy data or estimated using general circulation models. Comparisons between climate estimations derived from proxy records and from model simulations help to better understand mechanisms driving climate variations, and also offer the possibility to identify deficiencies in both approaches. This paper presents regional temperature reconstructions based on tree-ring maximum density series in the Pyrenees, and compares them with the output of global simulations for this region and with regional climate model simulations conducted for the target region. An ensemble of 24 reconstructions of May-to-September regional mean temperature was derived from 22 maximum density tree-ring site chronologies distributed over the larger Pyrenees area. Four different tree-ring series standardization procedures were applied, combining two detrending methods: 300-yr spline and the regional curve standardization (RCS). Additionally, different methodological variants for the regional chronology were generated by using three different aggregation methods. Calibration verification trials were performed in split periods and using two methods: regression and a simple variance matching. The resulting set of temperature reconstructions was compared with climate simulations performed with global (ECHO-G) and regional (MM5) climate models. The 24 variants of May-to-September temperature reconstructions reveal a generally coherent pattern of inter-annual to multi-centennial temperature variations in the Pyrenees region for the last 750 yr. However, some reconstructions display a marked positive trend for the entire length of the reconstruction, pointing out that the application of the RCS method to a suboptimal set of samples may lead to unreliable results. Climate model simulations agree with the tree-ring based reconstructions at multi-decadal time scales, suggesting solar variability and volcanism as the main factors controlling preindustrial mean temperature variations in the Pyrenees. Nevertheless, the comparison also highlights differences with the reconstructions, mainly in the amplitude of past temperature variations and in the 20th century trends. Neither proxy-based reconstructions nor model simulations are able to perfectly track the temperature variations of the instrumental record, suggesting that both approximations still need further improvements.
Resumo:
El volcanismo neógeno catalán se divide en 3 áreas: Cordillera Transversal o área de La Garrotxa, El Emporda y La Selva. Se han realizado análisis químicos de los materiales de los afloramientos principales, así como un estudio mineralógico mediante difractometria de rayos X y estudio de láminas delgadas al microscopio óptico. Se ha visto que son lavas relativamente homogéneas pertenecientes al grupo de los basaltos y basanitas. El empleo de la microscopía de calefacción permitió conocer la variación de la viscosidad de estos materiales con el aumento de la temperatura, viendo que funden a temperaturas relativamente bajas.
Resumo:
A small carbonatite dyke swarm has been identified at Naantali, southwest Finland. Several swarms of shoshonitic lamprophyres are also known along the Archean-Proterozoic boundary in eastern Finland and northwest Russia. These intrusions, along with the carbonatite intrusion at Halpanen, eastern Finland, represent a stage of widespread low-volume mantle-sourced alkaline magmatism in the Svecofennian Domain. Using trace element and isotope geochemistry coupled with precise geochronology from these rocks, a model is presented for the Proterozoic metasomatic evolution of the Fennoscandian subcontinental lithospheric mantle. At ~2.2-2.06 Ga, increased biological production in shallow seas linked to continental rifting, resulted in increased burial rates of organic carbon. Subduction between ~1.93-1.88 Ga returned organic carbon-enriched sediments of mixed Archean and Proterozoic provenance to the mantle. Dehydration reactions supplied water to the mantle wedge, driving arc volcanism, while mica, amphibole and carbonate were brought deeper into the mantle with the subducting slab. The cold subducted slab was heated conductively from the surrounding warm mantle, while pressures continued to gradually increase as a result of crustal thickening. The sediments began to melt in a two stage process, first producing a hydrous alkaline silicate melt, which infiltrated the mantle wedge and crystallised as metasomatic veins. At higher temperatures, carbonatite melt was produced, which preferentially infiltrated the pre-existing metasomatic vein network. At the onset of post-collisional extension, deep fault structures formed, providing conduits for mantle melts to reach the upper crust. Low-volume partial melting of the enriched mantle at depths of at least 110 km led to the formation of first carbonatitic magma and subsequently lamprophyric magma. Carbonatite was emplaced in the upper crust at Naantali at 1795.7 ± 6.8 Ma; lamprophyres along the Archean-Proterozoic boundary were emplaced between 1790.1 ± 3.3 Ma and 1781 ± 20 Ma.
Resumo:
The Island Lake greenstone belt is one of the major Archean supracrustal exposures in the northwestern part of the Superior Province of the Canadian Shield. This belt is subdivided into two units: 1) a lower sequence characterised by pillowed to massive, locally pyroclastic, basalt to andesite with a thin central zone of felsic derivatives, all of which are interbedded with and overlain by thick sequences of turbidite facies rock; 2) the upper unit which consists of thick stratified conglomerate overlain by thickly bedded arkose and feldspathic greywacke. Reconnaissance sampling traverses were completed across both the strike of the belt and along its margins with adjacent granitoids. Most of the belt is within the greenschist metamorphic f acies with amphibolite facies occurring in certain areas near t he margins. A post-tectonic, low pressure thermal event may be responsible for the development of a unit of cordierite schi s t which stretches southeastwards from the east end of Cochrane Bay. Volcanism is cyclical in nature changing from tholeiitic to calc-alkaline. There is a general progression in the character of the lavas from mafic t o felsic with stratigraphic height. Chemica l d a ta sugges t that h i gh level fractionation of a mantle- derived ' dry' magma i s t he s ource of the thole i iti c lavas. Contamination of this magma with 'we t' sia l and subsequent fractionation may be r esponsi b l e for the calcalkaline phases .Observations of stratigraphic relationships (in particular the contact between the supracrustals and the granitoids) coupled with the metamorphic and chemical studies, allow the construction of a preliminary model for the evolution of the Island Lake greenstone belt. The following sequential development is suggested: 1) a platform stage characterised by the subaqueous effusion of mafic to intermediate lavas of alternating tholeiitic and calc-alkaline affinities; 2) an edifice stage marked by the eruption of felsic calc-alkaline rocks; 3) an erosional stage characterised by the deposit~on of thick sequences of turbidite facies rocks; 4) the impingement of granitic masses into the margins of the greenstone belt, which was probably related to a downward warping of the supracrustal pilei 5) the erosion of sialic massifs surrounding and within the greenstone belt and of early supracrustal piles, to give the clastic upper unit.
Resumo:
The McArthur Township area in the Archean Abitibi Belt of northeast Ontario contains northwesterly trending volcanic rocks which are located on a limb of a large syncline. The axial trace of the syncline passes through the adjacent Douglas Township. The Archean volcanic rocks and associated sedimentary rocks are intruded and deformed by two large plutons and a few smaller hypabyssal intrusions. A petrographic and geochemical study of the Precambrian rocks exposed 1n the study area was undertaken in order to investigate the metamorphic grade and geochemical characteristics of the rocks. All the samples were studied with the microscope and analysis of 20 major and trace elements were determined on a selection of the less altered specimens by x-ray fluorescence. Three different periods of igneous activity have occurred in the study area. The first two periods were dominated by volcanic extrusive rocks accompanied by gabbroic sills. The third cycle is the diapiric intrusion of the granitic plutons and subsequent metamorphism of the older rocks to the low to medium grade. Two periods of sedimentation are also recognized in the study area which occurred after the first and second cycle of volcanism. Chemically, the lavas are subdivided into three main associations: (1) The komatiitic association is characterized by high MgO, high Ni, low Ti02 and a low FeO*/(FeO* + MgO) ratio. They occupy the base of each volcanic cycle and some of the flows exhibit spinifex textures. (2) The tholeiitic association displays distinct iron and titanium enrichment trends in the intermediate membersor -i r (3) The calc-alkaline association contains low FeO* and TI02 and high Ni contents relative to modern calc-alkaline types. They are formed at the end of each cycle of volcanism and overlie the tholeiitic flows. All three associations of the first volcanic cycle are exposed in the study area, while the second cycle is represented by a komatiltic sequence. The volcanic rocks were possibly formed by multiple partial melting of the Archean mantle to produce parental magmas under various P - T conditions.
Resumo:
The steeply dipping, isoclinally folded early Precambrian (Archean) Berry Creek Metavolcanic Complex comprises primary to resedimented pyroclastic, epiclastic and autoclastic deposits. Tephra erupted from central volcanic edifices was dumped by mass flow mechanisms into peripheral volcanosedimentary depressions. Sedimentation has been essentially contemporaneous with eruption and transport of tephra. The monolithic to heterolithic tuffaceous horizons are interpreted as subaerial to subaqueous pumice and ash flows, secondary debris flows, lahars, slump deposits and turbidites. Monolithic debris flows, derived from crumble breccia and dcme talus, formed during downslope collapse and subsequent gravity flowage. Heterolithic tuff, lahars and lava flow morphologies suggest at least temporary emergence of the edifice. Local collapse may have accompanied pyroclastic volcanism. The tephra, produced by hydromagmatic to magmatic eruptions, were rapidly transported, by primary and secondary mechanisms, to a shallow littoral to deep water subaqueous fan developed upon the subjacent mafic metavolcanic platform. Deposition resulted from traction, traction carpet, and suspension sedimentation from laminar to turbulent flows. Facies mapping revealed proximal (channel to overbank) to distal facies epiclastics (greywackes, argillite) intercalated with proximal vent to medial fan facies crystal rich ash flows, debris flows, bedded tuff and shallow water to deep water lava flows. Framework and matrix support debris flows exhibit a variety of subaqueous sedimentary structures, e.g., coarse tail grading, double grading, inverse to normal grading, graded stratified pebbly horizons, erosional channels. Pelitic to psammitic AE turbidites also contain primary stru~tures, e.g., flames, load casts, dewatering pipes. Despite low to intermediate pressure greenschist to amphibolite grade metamorphism and variably penetrative deformation, relicts of pumice fragments and shards were recognized as recrystallized quartzofeldspathic pseudomorphs. The mafic to felsic metavolcanics and metasediments contain blasts of hornblende, actinolite, garnet, pistacitic epidote, staurolite, albitic plagioclase, and rarely andalusite and cordierite. The mafic metavolcanics (Adams River Bay, Black River, Kenu Lake, Lobstick Bay, Snake Bay) display _holeiitic trends with komatiitic affinities. Chemical variations are consistent with high level fractionation of olivine, plagioclase, amphibole, and later magnetite from a parental komatiite. The intermediate to felsic (64-74% Si02) metavolcanics generally exhibit calc-alkaline trends. The compositional discontinuity, defined by major and trace element diversity, can be explained by a mechanism involving two different magma sources. Application of fractionation series models are inconsistent with the observed data. The tholeiitic basalts and basaltic andesites are probably derived by low pressure fractionation of a depleted (high degree of partial melting) mantle source. The depleted (low Y, Zr) calc-alkaline metavolcanics may be produced by partial melting of a geochemically evolved source, e.g., tonalitetrondhjemite, garnet amphibolite or hydrous basalt.
Resumo:
Le syndrome du X fragile (SXF) est la première cause héréditaire de déficience intellectuelle et également la première cause monogénique d’autisme. Le SXF est causé par l'expansion de la répétition du nucléotide CGG sur le gène FMR1, ce qui empêche l’expression de la protéine FMRP. L’absence du FMRP mène à une altération du développement structurel et fonctionnel de la synapse, ce qui empêche la maturation des synapses induite par l’activité et l’élagage synaptique, qui sont essentiels pour le développement cérébral et cognitif. Nous avons investigué les potentiels reliés aux événements (PRE) évoqués par des stimulations fondamentales auditives et visuelles dans douze adolescents et jeunes adultes (10-22) atteints du SXF, ainsi que des participants contrôles appariés en âge chronologique et développemental. Les résultats indiquent un profil des PRE altéré, notamment l’augmentation de l’amplitude de N1 auditive, par rapport aux deux groupes contrôle, ainsi que l’augmentation des amplitudes de P2 et N2 auditifs et de la latence de N2 auditif. Chez les patients SXF, le traitement sensoriel semble être davantage perturbé qu’immature. En outre, la modalité auditive semble être plus perturbée que la modalité visuelle. En combinaison avec des résultats anatomique du cerveau, des mécanismes biochimiques et du comportement, nos résultats suggèrent une hyperexcitabilité du système nerveux dans le SXF.
Resumo:
The Andaman-Nicobar Islands in the Bay of Bengal lies in a zone where the Indian plate subducts beneath the Burmese microplate, and therefore forms a belt of frequent earthquakes. Few efforts, not withstanding the available historical and instrumental data were not effectively used before the Mw 9.3 Sumatra-Andaman earthquake to draw any inference on the spatial and temporal distribution of large subduction zone earthquakes in this region. An attempt to constrain the active crustal deformation of the Andaman-Nicobar arc in the background of the December 26, 2004 Great Sumatra-Andaman megathrust earthquake is made here, thereby presenting a unique data set representing the pre-seismic convergence and co-seismic displacement.Understanding the mechanisms of the subduction zone earthquakes is both challenging sCientifically and important for assessing the related earthquake hazards. In many subduction zones, thrust earthquakes may have characteristic patterns in space and time. However, the mechanism of mega events still remains largely unresolved.Large subduction zone earthquakes are usually associated with high amplitude co-seismic deformation above the plate boundary megathrust and the elastic relaxation of the fore-arc. These are expressed as vertical changes in land level with the up-dip part of the rupture surface uplifted and the areas above the down-dip edge subsided. One of the most characteristic pattern associated with the inter-seismic era is that the deformation is in an opposite sense that of co-seismic period.This work was started in 2002 to understand the tectonic deformation along the Andaman-Nicobar arc using seismological, geological and geodetic data. The occurrence of the 2004 megathrust earthquake gave a new dimension to this study, by providing an opportunity to examine the co-seismic deformation associated with the greatest earthquake to have occurred since the advent of Global Positioning System (GPS) and broadband seismometry. The major objectives of this study are to assess the pre-seismic stress regimes, to determine the pre-seismic convergence rate, to analyze and interpret the pattern of co-seismic displacement and slip on various segments and to look out for any possible recurrence interval for megathrust event occurrence for Andaman-Nicobar subduction zone. This thesis is arranged in six chapters with further subdivisions dealing all the above aspects.
Resumo:
This work aims to study the variation in subduction zone geometry along and across the arc and the fault pattern within the subducting plate. Depth of penetration as well as the dip of the Benioff zone varies considerably along the arc which corresponds to the curvature of the fold- thrust belt which varies from concave to convex in different sectors of the arc. The entire arc is divided into 27 segments and depth sections thus prepared are utilized to investigate the average dip of the Benioff zone in the different parts of the entire arc, penetration depth of the subducting lithosphere, the subduction zone geometry underlying the trench, the arctrench gap, etc.The study also describes how different seismogenic sources are identified in the region, estimation of moment release rate and deformation pattern. The region is divided into broad seismogenic belts. Based on these previous studies and seismicity Pattern, we identified several broad distinct seismogenic belts/sources. These are l) the Outer arc region consisting of Andaman-Nicobar islands 2) the back-arc Andaman Sea 3)The Sumatran fault zone(SFZ)4)Java onshore region termed as Jave Fault Zone(JFZ)5)Sumatran fore arc silver plate consisting of Mentawai fault(MFZ)6) The offshore java fore arc region 7)The Sunda Strait region.As the Seismicity is variable,it is difficult to demarcate individual seismogenic sources.Hence, we employed a moving window method having a window length of 3—4° and with 50% overlapping starting from one end to the other. We succeeded in defining 4 sources each in the Andaman fore arc and Back arc region, 9 such sources (moving windows) in the Sumatran Fault zone (SFZ), 9 sources in the offshore SFZ region and 7 sources in the offshore Java region. Because of the low seismicity along JFZ, it is separated into three seismogenic sources namely West Java, Central Java and East Java. The Sunda strait is considered as a single seismogenic source.The deformation rates for each of the seismogenic zones have been computed. A detailed error analysis of velocity tensors using Monte—Carlo simulation method has been carried out in order to obtain uncertainties. The eigen values and the respective eigen vectors of the velocity tensor are computed to analyze the actual deformation pattem for different zones. The results obtained have been discussed in the light of regional tectonics, and their implications in terms of geodynamics have been enumerated.ln the light of recent major earthquakes (26th December 2004 and 28th March 2005 events) and the ongoing seismic activity, we have recalculated the variation in the crustal deformation rates prior and after these earthquakes in Andaman—Sumatra region including the data up to 2005 and the significant results has been presented.ln this chapter, the down going lithosphere along the subduction zone is modeled using the free air gravity data by taking into consideration the thickness of the crustal layer, the thickness of the subducting slab, sediment thickness, presence of volcanism, the proximity of the continental crust etc. Here a systematic and detailed gravity interpretation constrained by seismicity and seismic data in the Andaman arc and the Andaman Sea region in order to delineate the crustal structure and density heterogeneities a Io nagnd across the arc and its correlation with the seismogenic behaviour is presented.
Resumo:
Si consideramos nuestro planeta como un conjunto de subsistemas interdependientes las relaciones que se establecen entre todos sus elementos definen un sistema complejo donde cualquiera de sus partes puede influir en la evolución del resto. En este escenario de interconexiones los volcanes asumen un papel muy importante